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A harmonic mean inequality for the digamma function and
related results
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ABSTRACT — We present some inequalities and a concavity property of the digamma
function ¢ = IV /T, where T denotes Euler’s gamma function. In particular, we offer
a new characterization of Euler’s constant v = 0.57721.... We prove that —v is the
minimum of the harmonic mean of ¢ (z) and ¥ (1/z) for z > 0.
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1. Introduction and main result

In 1974, Gautschi [12] presented a very interesting mean value inequality for
the classical gamma function of Euler. He proved that for all positive real numbers
x the harmonic mean of I'(z) and T'(1/x) is greater than or equal to 1, that is,

2T (z) T(1/x)

(1'1) > W (.T > 0).

The sign of equality holds for z = 1.
As an immediate consequence of (1.1) we obtain the inequalities

(1.2) 2<TI(x)+T(1/x) (z>0)
and
(1.3) 1<T(x)I'(1/z) (x> 0).
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In several research papers numerous refinements, extensions and relatives of
Gautschi’s inequality were published; see [3], [4], [5], [6], [8], [9], [13], [14], [15]. In
this article we offer a counterpart of (1.1) for the digamma (or psi) function

¢<x)zr(x)=/0 (i—le_zt)dtz—fy—i—i—;k(xik) (> 0).

Here, v = —1(1) = 0.57721... denotes Euler’s constant.

The v-function is strictly increasing on (0,00) with ¢ (z¢) = 0, where xg =
1.46163.... In particular, ¢ is negative on (0,z0) and positive on (zg,00). A
collection of the most important properties of this function can be found, for
instance, in [1, chapter 6] and [18, chapter 5].

The digamma function plays an important role in several branches of mathe-
matics and related areas. In fact, it has interesting applications in the theory of
special functions, in the theory of infinite series, in statistics, in physics and it is
also subject of number theoretic investigations. See [10], [11], [16], [17], [19].

It is our main goal to prove the following striking companion of (1.1).

THEOREM. For all positive real numbers x we have

C29@)e(1/a)
"= P+ o(1jz)

The sign of equality holds if and only if x = 1.

(1.4)

This result leads to a new characterization of Euler’s constant: —-+ is the
minimum of the harmonic mean of ¢)(x) and 1(1/x) for x > 0. Since the expression
on the right-hand side of (1.4) tends to oo if # — 0, we conclude that there is no
constant upper bound which is valid for all z > 0.

In the next section we present a concavity property of the digamma function
and some inequalities. With the help of these results we are able to offer a short
proof of the Theorem. This proof is given in Section 3.

2. Concavity and inequalities

It is well-known that the i-function is strictly concave on (0,00). Since z +—
x4’ (z) is strictly increasing on (0, 00), see [7], we conclude from

d 1
/e = ¥ (1)2) (@>0)
that = — v(1/z) is strictly convex on (0,00). Now we study x — 9(x) + ¢ (1/z).

PRrROPOSITION 1. The function
P(z) = ¢(x) +(1/x)

is strictly concave on (0, 00).
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ProoF. By differentiation we find
2P () = 229/ (1/x) + 4" (1/2) + 2" (2).
Applying the recurrence relations

Wie+1) =(z) - -,

and the estimates

1 1 1 1 1
/ " - =
1/} ({E) < ; + ) + 623’ ¢ (l’) < 2 3 ((E > 0)

which are given in [2], we obtain for positive z:
' P"(z) = 2z(2®+¢'(1+1/2)) —22° +¢" (1 + 1/2) + 2™ (2)
< 2a(a®+ SRR S—— )
1+1/z " 2(0+1/2)2 " 6(1+1/x)3
1 1
b e )
YT Ut ee Uxijep U B

—ﬁ(&# +20% 492 + 92 + 3)

< 0.

This reveals that P is strictly concave on (0, 00). O

An application of Proposition 1 leads to the following analogue of (1.2).

PROPOSITION 2. For all positive real numbers x # 1 we have

(2.1) Y(x) +(l/z) < —27.

The upper bound is sharp.

PROOF. Since P” is negative on (0, 00), we obtain P’(x) > P’(1) =0 for z € (0,1)
and P'(xz) < P'(1) =0 for « > 1. It follows that P is strictly increasing on (0, 1]
and strictly decreasing on [1,00). Thus P(z) < P(1) = =2y forx >0,z #1. O

REMARK 1. Inequality (2.1) can also be proved by using the fact that the
function u(x) = x¢’(z) is strictly decreasing on (0,00). Indeed, since zP'(x) =
u(z) —u(l/x), we obtain that P’ is positive on (0,1) and negative on (1,00). A
proof for the monotonicity behaviour of 2 — z¢¢)(®) ()| (¢ € R; k € N) is given in
[7].

Next, we present two inequalities which are closely related to (2.1).
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PROPOSITION 3. For all real numbers y € (0,1) we have

(2.2) (1 +y) (1 —y) <>

The upper bound is sharp.

PRrROOF. If y € [zg — 1,1), then we have ¥(1 —y) < 0 < (1 + y). This reveals
that (2.2) holds. Next, we assume that y € (0,29 — 1). Using the power series
expansion

Pl 42)=—v+ Y (DR (2l < 1)
k=2
we obtain the estimates

0<—v(14y) <v-<C2y+CB3)y

and
0<—p(1-y) < 7+LRy+CB)D v
k=2
2
= 7 +C@y+cB)—
< 7+ C2)y +23)y%
Thus
YL+l —y) <72 —cop® — esy® + cay?
with

co =C(2)2=37¢(3) = 0.624..., ¢35 =C((2)C(3) =1.977..., ¢4 = 2¢(3)? = 2.889....

We have c3 > c4/2. Hence c3y® > cuy*. This leads to (2.2).

Since
. . _ 2
L (1 +y)p(L —y) =7,
we conclude that the upper bound given in (2.2) is sharp. O

The following counterpart of (1.3) is valid.

PROPOSITION 4. For all positive real numbers x # 1 we have

(2.3) V() d(1/z) <%

The upper bound is sharp.
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PRrROOF. It suffices to prove (2.3) for z > 1. If x > xg, then ¢(1/z) < 0 < ¢(z).
It follows that (2.3) is valid.

Next, let € (1,20). Weset £ =1+ y. Then 1/ > 1 —y. Thus (1 —y) <
¥(1/x). Applying this inequality and (2.2) yields

P(a)(1/z) =1+ y)v(l/z) < (1 +y)(l —y) <>

Since (1) = —~, the upper bound given in (2.3) is best possible. O

REMARK 2. The limit relations

Jlim (@) +(1/2) = oo, m (1 +y)u(l —y) = —oo,

Tim (@)(1/7) = —oc,

reveal that there are no constant lower bounds for the expressions given in (2.1),
(2.2) and (2.3) respectively.

3. Proof of Theorem

From (2.1) we conclude that the expression on the right-hand side of (1.4) is
defined for all positive . Applying (2.1) and (2.3) gives for z > 0, x # 1:

1
2 > 292 —

1
(@) + o(1/) —2y

2)(x)y(1/x) - 2y

1
9@ + (/)

The proof of the Theorem is complete.
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