Finite groups with H_L-embedded subgroups

BIN HU* – JIANHONG HUANG**– ALEXANDER N. SKIBA

ABSTRACT – Let G be a finite soluble group and let \mathcal{F} be a class of groups. A chief factor H/K of G is said to be \mathcal{F}-central (in G) if $(H/K) \rtimes (G/C_G(H/K)) \in \mathcal{F}$; we write $L_{\mathcal{F}}(G)$ to denote the set of all subgroups A of G such that every chief factor H/K of G between A_G and A_G is \mathcal{F}-central in G. Let \mathcal{L} be a set of subgroups of G. We say that a subgroup A of G is H_L-embedded in G provided A is a Hall subgroup of some subgroup $E \in \mathcal{L}$. In this paper, we study the structure of G under the condition that every subgroup of G is H_L-embedded in G, where $\mathcal{L} = L_{\mathcal{F}}(G)$ for some hereditary saturated formation \mathcal{F}. Some known results are generalized.

KEYWORDS. finite group, hereditary saturated formation, Hall subgroup, K-\mathcal{F}-subnormal subgroup, H_L-embedded subgroup.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G; C_n denotes a cyclic

*Research is supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).
**Corresponding author.

Bin Hu, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, P.R. China
E-mail: hubin118@126.com

Jianhong Huang, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, P.R. China
E-mail: jhh320@126.com

Alexander N. Skiba, Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel, 246019, Belarus
E-mail: alexander.skiba49@gmail.com
group of order \(n \).

Let \(\mathfrak{F} \) be a class of groups. If \(1 \in \mathfrak{F} \), then we write \(G^\mathfrak{F} \) to denote the intersection of all normal subgroups \(N \) of \(G \) with \(G/N \in \mathfrak{F} \). The class \(\mathfrak{F} \) is said to be a formation

if either \(\mathfrak{F} = \emptyset \) or \(1 \in \mathfrak{F} \) and every homomorphic image of \(G/G^\mathfrak{F} \) belongs to \(\mathfrak{F} \) for every group \(G \); hereditary (Mal’cev [1]) if \(H \in \mathfrak{F} \) whenever \(H \leq G \in \mathfrak{F} \). The formation \(\mathfrak{F} \) is said to be saturated if \(G \in \mathfrak{F} \) whenever \(G^\mathfrak{F} \leq \Phi(G) \).

In what follows, \(\mathfrak{F}, \mathfrak{U} \) and \(\mathfrak{S} \) are the classes of all nilpotent, of all supersoluble and of all soluble groups, respectively, and \(\mathfrak{F} \) is a hereditary saturated formation containing all nilpotent groups. It is well-known that \(\mathfrak{F} \) and \(\mathfrak{U} \) are hereditary saturated formations.

A subgroup \(H \) of \(G \) is said to be an \(\mathfrak{F} \)-projector of \(G \) [2, p. 101] if \(HN/N \) is \(\mathfrak{F} \)-maximal in \(G/N \), that is, \(HN/N = U/N \) for every subgroup \(U/N \) of \(G/N \) such that \(HN/N \leq U/N \in \mathfrak{F} \), for all \(N \leq G \). It is well-known that the \(\mathfrak{F} \)-projectors of \(G \) are exactly the Carter subgroups of a soluble group \(G \). Also, in the theory of saturated formations

the so-called \(\mathfrak{F} \)-normalizers, which have properties analogues to the properties of the system normalizers of soluble groups, were introduced and studied by many authors (see, in particular, [2, Chapter 4] and [3, Chapter IV]).

If \(K \leq H \) and \(C \) are normal subgroups of \(G \) and \(C \leq C_G(H/K) \), then we can form the semidirect product \((H/K) \ltimes (G/C) \) putting \((hK)^c = g^{-1}hgK \) for all \(hK \in H/K \) and \(gC \in G/C \). We say that a chief factor \(H/K \) of \(G \) is \(\mathfrak{F} \)-central in \(G \) [4] if \((H/K) \ltimes (G/C)(H/K)) \in \mathfrak{F} \). Otherwise, it is called \(\mathfrak{F} \)-eccentric.

We write, following [5], \(\mathcal{L}_{c\mathfrak{F}}(G) \) to denote the set of all subgroups \(A \) of \(G \) such that every chief factor \(H/K \) of \(G \) between \(A_G \) and \(A^G \) is \(\mathfrak{F} \)-central in \(G \).

By definition, every normal subgroup of \(G \) belongs to \(\mathcal{L}_{c\mathfrak{F}}(G) \). In the paper [5], it is proved that the set \(\mathcal{L}_{c\mathfrak{F}}(G) \) forms a sublattice of the lattice of all subgroups of \(G \). Let us note in passing, that lattices of this kind have already found applications in the analysis of various questions [5]–[9]. In this paper we continue study the influence of elements in \(\mathcal{L}_{c\mathfrak{F}}(G) \) on the structure of \(G \). The main tool for that is the following

Definition 1.1. Let \(\mathcal{L} \) be any set of subgroups of a group \(G \) containing all its normal subgroups. We say that a subgroup \(H \) of \(G \) is \(H_\mathcal{L} \)-embedded in \(G \) if \(H \) is a Hall subgroup of some subgroup \(E \in \mathcal{L} \).

Note that all subgroups in \(\mathcal{L} \) and all Hall subgroups of \(G \) are \(H_\mathcal{L} \)-embedded in \(G \).

Groups with given systems of \(H_\mathcal{L} \)-embedded subgroups for some sublattices \(\mathcal{L} \) of the lattice of all subgroups of \(G \) were studied by many authors (see, for example, the recent papers [10]–[16]).

Our first goal here is to prove the following result in this line researches.

Theorem 1.2. Let \(D = G^\mathfrak{F} \) and \(\mathcal{L} = \mathcal{L}_{c\mathfrak{F}}(G) \).

1. If \(G \) possesses an \(H_\mathcal{L} \)-embedded subgroup of order \(|G : A| \) for each subgroup \(A \) of \(G \) of prime power order, then \(D \) is cyclic of odd square free order.

2. If for each integer \(r \) dividing \(|G/D| \) there exists a subgroup of \(G/D \) of order \(r \) and \(D \) is cyclic of square free order, then \(G \) possesses an \(H_\mathcal{L} \)-embedded subgroup of order \(d \) for each integer \(d \) dividing \(|G| \).

3. Every subgroup of \(G \) is \(H_\mathcal{L} \)-embedded in \(G \) if and only if \(D \) is a Hall cyclic subgroup of odd square free order.
Corollary 1.3 (See Theorem 7 in [11]). If for any subgroup A of G there is a subgroup B such that $|B| = |G : A|$ and B is a Hall subgroup of some normal subgroup of G, then G is supersoluble.

From Theorem 1.2 we get also the following characterization of supersolubility.

Corollary 1.4. Let $\mathcal{L} = \mathcal{L}_{all}(G)$. Then G is supersoluble if and only if every subgroup of G is $H_{\mathcal{L}}$-embedded in G.

Recall that a subgroup A of G is said to be \mathfrak{F}-subnormal in G in the sense of Kegel [17] or K-\mathfrak{F}-subnormal in G [2, 6.1.4] if there is a subgroup chain

$$A = A_0 \leq A_1 \leq \cdots \leq A_n = G$$

such that either $A_{i-1} \lhd A_i$ or $A_i/(A_{i-1})A_i \in \mathfrak{F}$ for all $i = 1, \ldots, n$.

Note that any subnormal subgroup of G is also a K-\mathfrak{F}-subnormal subgroup of G.

Remark 1.5. (1) If $G \in \mathfrak{F}$, then for every subgroup A of G the chain $A \leq G$ satisfies that $G/A \in \mathfrak{F}$. That is to say that every subgroup of G is K-\mathfrak{F}-subnormal in G.

(2) Let G be a simple group such that $G \notin \mathfrak{F}$. Clearly the chain $G = A_0 \leq A_1 = G$ satisfies that A_0 is normal in A_1 and $A_1/(A_0)A_1 = G/G_0 = 1 \in \mathfrak{F}$. So, G is K-\mathfrak{F}-subnormal in G. If A is a proper K-\mathfrak{F}-subnormal subgroup of G, then there is a subgroup chain

$$A = A_0 \leq A_1 \leq \cdots \leq A_n = G$$

such that either $A_{i-1} \lhd A_i$ or $A_i/(A_{i-1})A_i \in \mathfrak{F}$ for all $i = 1, \ldots, n$. If $A \neq 1$, then simplicity of G implies that $G/(A_{n-1})G = \mathfrak{F}$ and this is not true. Therefore $\{1, G\}$ is the set of all K-\mathfrak{F}-subnormal subgroups of G.

(3) Now let \mathcal{L} be the set of all K-\mathfrak{F}-subnormal subgroups of G. If $G \in \mathfrak{F}$, then every subgroup of G is $H_{\mathcal{L}}$-embedded in G by Part (1). On the other hand, if G is simple and $G \notin \mathfrak{F}$, then A is $H_{\mathcal{L}}$-embedded in G if and only if A is a Hall subgroup of G by Part (2).

Definition 1.6. We say that G has the structure $S_\mathfrak{F}$ if G is the semidirect product $G = D \rtimes M$ for some subgroup M of G and $D = G^\mathfrak{F}$, and the following holds:

1. D is a Hall subgroup of G,
2. D possesses a Sylow tower,
3. M acts irreducibly on every M-invariant Sylow subgroup of D, and
4. every chief factor of G below D is \mathfrak{F}-eccentric in G.

Remark 1.7. Let G have the structure $S_\mathfrak{F}$ and $D = G^\mathfrak{F}$ with $\pi = \pi(D)$.

(1) If $G \in \mathfrak{F}$, then G has a trivial $S_\mathfrak{F}$-structure since $G^\mathfrak{F} = 1$ and $M = G$.

(2) If $N \trianglelefteq G$, then G/N has the structure $S_{\mathfrak{F}}$.

Indeed, $(G/N)^\mathfrak{F} = DN/N$ by Proposition 2.2.8 in [2]. Then $(G/N)^\mathfrak{F}$ is a Hall subgroup of G/N and from the G-isomorphism $DN/N \simeq D/(D \cap N)$ it follows that $(G/N)^\mathfrak{F}$ possesses a Sylow tower and every chief factor of G/N below $(G/N)^\mathfrak{F}$ is \mathfrak{F}-eccentric in G/N. Finally, it is clear that MN/N acts irreducibly on every MN/N-invariant Sylow subgroup of $DN/N = (G/N)^\mathfrak{F}$.
Let H be a complement of D in G. Then H is a Hall subgroup of G. Hence $|H| = |G/D|$ by [18, Chapter A, Lemma 1.7] since every chief factor of G between D and G is \mathfrak{F}-central in G by the Barnes-Kegel result [18, IV, Proposition 1.5]. Therefore M is an \mathfrak{F}-normalizer of G. By another well-known result on groups with soluble G^R, G possesses an \mathfrak{F}-projector V such that $M \leq V$ and every two \mathfrak{F}-projectors of G are conjugate.

(4) Suppose that $\mathfrak{F} \subseteq \mathfrak{U}$. In this case M (see Part (3)) is an \mathfrak{F}-projector of G.

In fact, in view of Parts (2) and (3), it is enough to prove that M is \mathfrak{F}-maximal in G, that is, $M = U$ for every subgroup U of G such that $M \leq U \in \mathfrak{F}$. If $D = 1$, it is clear. Now assume that $D \neq 1$ and let R be the non-identity normal Sylow subgroup of D. Then R is normal in G and $G/R = (D/R) \rtimes (MR/R)$ has the structure $S_{\mathfrak{F}}$, where $D/R = (G/R)^R$, by Part (2). Moreover, $MR/R \leq UR/R \cong U/(U \cap R) \in \mathfrak{F}$, so $R \rtimes M = RU$ by induction. Hence $U = M(U \cap R)$, where $U \cap R = 1$ or $U \cap R = R$ since M and so also U act irreducibly on R. In the former case from $R \times M = RU$ and $M \leq U$ we get $M = U$. Now assume that $U \cap R = R$, so $RM = U \in \mathfrak{F} \subseteq \mathfrak{U}$. Then RM is supersolvable and M acts irreducibly on R, hence $|R| = p$. It follows that $G/C_G(R)$ is cyclic, which implies that $D \leq C_G(R)$. Let V be a complement of R in D. Then V is a characteristic subgroup of D and V is normal in G and $G/V \cong RM \in \mathfrak{F}$, which implies that $D \leq V < D$. This contradiction completes the proof of the fact that M is an \mathfrak{F}-projector of G.

It is clear that every subgroup $A \in \mathcal{L}_G(G)$ is $K_{\mathfrak{F}}$-subnormal in G (see Lemma 3.2 below). This observation allows us to use in the proof of Theorem 1.4 the following general fact.

Theorem 1.8. Let \mathcal{L} be the set of all $K_{\mathfrak{F}}$-subnormal subgroups of G. Suppose that G^R is soluble. Then every subgroup of G is $H_{\mathcal{L}}$-embedded in G if and only if every subgroup of \mathcal{L} has the structure $S_{\mathfrak{F}}$.

Note that since a subgroup A of G is $K_{\mathfrak{U}}$-subnormal in G if and only if it is subnormal in G, we get from Theorem 1.8 the following known result.

Corollary 1.9. (See Theorem 3.3 in [12]). Let \mathcal{L} be the set of all subnormal subgroups of G. Then every subgroup of G is $H_{\mathcal{L}}$-embedded in G if and only if every subgroup of \mathcal{L} has the structure $S_{\mathfrak{U}}$.

Recall that a subgroup S of G is called a Gaschütz subgroup of G (L.A. Shemetkov [3, IV, 15.3]) if S is supersolvable and for any subgroups $K \leq H$ of G, where $S \leq K \neq H$, the number $|H : K|$ is not prime. In the case when G is soluble the class of all Gaschütz subgroups of G coincides with the class of all \mathfrak{U}-projectors of G [3, Chapter III, Remark 8.2]. Therefore, in view of Remark 1.7(4), we get from Theorem 1.8 the following

Corollary 1.10. Let \mathcal{L} be the set of all $K_{\mathfrak{U}}$-subnormal subgroups of G. Then every subgroup of G is $H_{\mathcal{L}}$-embedded in G if and only if every subgroup of \mathcal{L} has the structure $S_{\mathfrak{U}}$. Moreover, in this case the class of all Gaschütz subgroups of G coincides with the class of all supersoluble normalizers of G.
2. Proof of Theorem 1.8

The first lemma collects the properties of K-$S_\mathfrak{S}$-subnormal subgroups which we use in our proofs.

Lemma 2.1. Let H, E and R be subgroups of G, where H is K-$S_\mathfrak{S}$-subnormal and R is normal in G.

1. $H \cap E$ is a K-$S_\mathfrak{S}$-subnormal subgroup of E [2, Lemma 6.1.7(2)].
2. HR/R is a K-$S_\mathfrak{S}$-subnormal subgroup of G/R [2, Lemma 6.1.6(3)].
3. If $R \leq E$ and E/R is K-$S_\mathfrak{S}$-subnormal in G/R, then E is K-$S_\mathfrak{S}$-subnormal in G [2, Lemma 6.1.6(2)].
4. If $G^S \leq E$, then E is K-$S_\mathfrak{S}$-subnormal in G [2, Lemma 6.1.7(1)].

We use $L_{K_\mathfrak{S}}(G)$ to denote the set of all K-$S_\mathfrak{S}$-subnormal subgroups of G.

Lemma 2.2. Let $\mathcal{L} = L_{K_\mathfrak{S}}(G)$, and let A, E and R be subgroups of G, where A is $H_{\mathcal{L}}$-embedded and R is normal in G.

1. If $A \leq E$, then A is $H_{L_{K_\mathfrak{S}}(E)}$-embedded in E.
2. AR/R is $H_{L_{K_\mathfrak{S}}(G/R)}$-embedded in G/R.
3. If $|G : A|$ is a power of prime, then A is either a Hall subgroup of G or K-$S_\mathfrak{S}$-subnormal in G.

Proof. Let V be a K-$S_\mathfrak{S}$-subnormal subgroup of G such that A is a Hall subgroup of V.

1. We have $A \leq E \cap V \leq V$, where $E \cap V$ is a K-$S_\mathfrak{S}$-subnormal subgroup of E by Lemma 2.1(1). It is clear also that A is a Hall subgroup of $E \cap V$. Hence A is $H_{\mathcal{L}(E)}$-embedded in E.
2. In view of Lemma 2.1(2), VR/R is a K-$S_\mathfrak{S}$-subnormal subgroup of G/R. It is also clear that AR/R is a Hall subgroup of VR/R. Hence we have (2).
3. Assume that A is not K-$S_\mathfrak{S}$-subnormal in G. Then $A < V$. By hypothesis, $|G : A|$ is a power of p for some prime p. Then $|V : A|$ is a power of p. But A is a Hall subgroup of V. Hence p does not divides $|A|$, so A is a Hall subgroup of G.

The lemma is proved.

Lemma 2.3 (Knyagina and Monakhov [19]). Let H, K and N be pairwise permutable subgroups of G and H is a Hall subgroup of G. Then $N \cap HK = (N \cap H)(N \cap K)$.

The following lemma is well-known (see, for example, Lemma 3.29 in [4]).

Lemma 2.4. Let H/K be an abelian chief factor of G and let M be a maximal subgroup of G with $K \leq M$ and $HM = G$. Then $G/MG \simeq (H/K) \rtimes (G/C_G(H/K))$.

Proof of Theorem 1.8. First we show that if every subgroup of G is $H_{\mathcal{L}}$-embedded in G, then every K-$S_\mathfrak{S}$-subnormal subgroup V of G such that $V \not\in \mathfrak{S}$ and V has the structure $S_\mathfrak{S}$. Assume that this is false and let G be a counterexample of minimal order. Then every subgroup of G is $H_{\mathcal{L}}$-embedded in G and there exists a subgroup $V \in \mathcal{L}$ such that V fails to have the structure $S_\mathfrak{S}$. Obviously, $G \not\in \mathfrak{S}$. Otherwise such V cannot exist since \mathfrak{S} is hereditary.

1. If E is any proper subgroup of G, then every K-$S_\mathfrak{S}$-subnormal subgroup H of E such that $H \not\in \mathfrak{S}$ has the structure $S_\mathfrak{S}$. Hence $V = G$.

Since
\[E/(E \cap G^3) \simeq G^3 E/G^3 \leq G/G^3 \in \mathfrak{F}, \]
\(E^3 \leq G^3 \in \mathfrak{S} \) and so the hypothesis holds for \(E \) by Lemma 2.2(1). Hence we have (1) by the choice of \(G \).

(2) If \(H \) is a subgroup of \(G \) such that \(|G : H| \) is power of prime and \(H \) is not a Hall subgroup of \(G \), then \(H \) is \(K^-\mathfrak{F}\)-subnormal in \(G \) (This directly follows from Lemma 2.2(3)).

(3) If \(N \) is any non-identity normal subgroup of \(G \), then every \(K^-\mathfrak{F}\)-subnormal subgroup \(H/N \) of \(G/N \) such that \(H/N \notin \mathfrak{F} \) has the structure \(S_3 \).

Since
\[(G/N)^3 = G^3 N/N \simeq G^3 / (G^3 \cap N) \in \mathfrak{S} \]
by Proposition 2.2.8 in [2], this follows from Lemma 2.2(2) and the choice of \(G \).

(4) Write \(D = G^3 \) and \(\pi = \pi(D) \). Then \(D \) is a Hall \(\pi \)-subgroup of \(G \). Hence every Hall \(\pi'\)-subgroup of \(G \) is a complement of \(D \) in \(G \).

Recall that \(G \notin \mathfrak{F} \), so \(D \neq 1 \). Suppose that this claim is false and let \(P \) be a Sylow \(p \)-subgroup of \(D \) such that \(1 < P < G_p \), where \(G_p \) is a Sylow \(p \)-subgroup of \(G \). Let \(R \) be a minimal normal subgroup of \(G \) contained in \(D \). Then \(R \) is a \(q \)-group for some prime \(q \) since \(D \) is soluble by hypothesis. Moreover, \(D/R = (G/R)^3 \) is a Hall subgroup of \(G/R \) by Claim (3). Suppose that \(PR/R \neq 1 \). Then \(PR/R \) is a Sylow \(p \)-subgroup of \(G/R \). If \(q \neq p \), then \(P \) is a Sylow \(p \)-subgroup of \(G \). This contradicts the fact that \(P < G_p \). Hence \(q = p \), so \(R \leq P \) and therefore \(P/R \) is a Sylow \(p \)-subgroup of \(G/R \). It follows that \(P \) is a Sylow \(p \)-subgroup of \(G \). This contradiction shows that \(PR/R = 1 \), which implies that \(P = R \) is a Sylow \(p \)-subgroup of \(D \). Therefore \(R \) is the unique minimal normal subgroup of \(G \) contained in \(D \). It is also clear that a \(p \)-complement \(U \) of \(D \) is a Hall subgroup of \(G \).

Now we show that \(R \notin \Phi(G) \). Indeed, assume that \(R \leq \Phi(G) \). Then \(D \neq R \) since \(D = G^3 \). Hence \(U \neq 1 \). Since \(D \) is soluble, every two \(p \)-complements of \(D \) are conjugate in \(D \) and so the Frattini Argument implies that \(G = DN_G(U) = (RU)N_G(U) = RN_G(U) = N_G(U) \) since \(R \leq \Phi(G) \). Therefore \(G \) has a minimal normal subgroup \(L \) such that \(L \neq R \) and \(L \leq D \). This contradiction shows that \(R \notin \Phi(G) \).

Let \(S \) be a maximal subgroup of \(G \) such that \(RS = G \). Then \(|G : S| \) is a power of \(p \). On the other hand, since \(R \) is not a Sylow \(p \)-subgroup of \(G \), \(p \) divides \(|S| \). Then \(S \) is not a Hall subgroup of \(G \) and so \(S \) is \(K^-\mathfrak{F}\)-subnormal in \(G \) by Claim (2). Therefore \(G/S_G \in \mathfrak{F} \), which implies that \(R \leq D \leq S_G \leq S \). This contradiction completes the proof of (4).

(5) If \(E \) is any proper subgroup of \(G \) containing a complement of \(D \) in \(G \), then \(E \) is a Hall subgroup of \(G \) and \(E \) is not \(K^-\mathfrak{F}\)-subnormal in \(G \).

It is enough to show that \(E \) is not \(K^-\mathfrak{F}\)-subnormal in \(G \). Assume that there is a subgroup chain
\[E = E_0 \leq E_1 \leq \cdots \leq E_r = G \]
such that either \(E_{i-1} \leq E_i \) or \(E_i / (E_{i-1}) E_i \in \mathfrak{F} \) for all \(i = 1, \ldots, r \). Let \(W = E_{r-1} \). We can assume without loss of generality that \(W \neq G \) since \(E < G \).
First assume that W is normal in G. Then $G/W \cong DW/W \cong D/(D \cap W)$ is soluble, so there exists a normal maximal subgroup U of G such that $W \leq U$. Then $G/U \in \mathfrak{F}$ since \mathfrak{F} contains all nilpotent groups by our assumption on \mathfrak{F}, hence $G = DE \leq U < G$. This contradiction implies that $G/W_G \in \mathfrak{F}$, so $D \leq W_G$ and hence $G = DE \leq W < G$. This contradiction shows that every proper subgroup E of G containing a complement of D in G is not K-\mathfrak{F}-subnormal in G. Therefore the claim is true.

(6) For every $p \in \pi$ and any complement M of D in G, there is a Sylow p-subgroup P of D such that $M \leq N_G(P)$ and $M \not\leq N_G(L)$ for each non-identity proper subgroup L of P, that is, M acts irreducibly on P.

The Frattini Argument and Claim (4) imply that for some Sylow p-subgroup P of G we have $M \leq N_G(P)$. Moreover, if for some non-identity proper subgroup L of P we have $M \leq N_G(L)$, then ML is not a Hall subgroup of G, contrary to Claim (5). Hence we have (6).

(7) D possesses a Sylow tower.

Let R be a minimal normal subgroup of G contained in D. Then R is a p-group for some prime p since D is soluble. Moreover, Claim (6) implies that R is a Sylow p-subgroup of D. On the other hand, by Claim (3), D/R possesses a Sylow tower. Hence we have (7).

(8) Every chief factor of G below D is \mathfrak{F}-eccentric.

Let R be a minimal normal subgroup of G contained in D. Then R is a Sylow p-subgroup of G for some prime p by Claim (6). Let U be a p-complement of G. We have $G = RU$ and, by Lemma 2.4,

$$G/U_G = (RU_G/U_G) \times (U/U_G) \simeq R \times (G/C_G(R)).$$

If $R/1$ were \mathfrak{F}-central, then $D \leq U_G$. But then $G = U$, a contradiction. Hence $R/1$ is \mathfrak{F}-eccentric in G.

If $G/R \in \mathfrak{F}$, then $R = D$ and we are done. Otherwise $G/R \not\in \mathfrak{F}$ and, by Claim (3), every chief factor of G/R below D/R is \mathfrak{F}-eccentric in G/R. Thus, every chief factor of G below D is \mathfrak{F}-eccentric in G by the Jordan-Hölder theorem for the chief series.

The final contradiction for the necessity. From Claims (4), (6)–(8) it follows that $V = G$ has the structure $S_\mathfrak{F}$, against our assumption. Therefore the necessity of the condition of the theorem is proved.

Now suppose that every K-\mathfrak{F}-subnormal subgroup E of G such that $E \not\in \mathfrak{F}$ has the structure $S_{\mathfrak{F}}$. We will prove by induction on $|G|$ that in this case every subgroup of G is $H_\mathcal{L}$-embedded in G. Assume that this is false and let G be a counterexample of minimal order. Then $D \neq 1$ by Remark 1.5(1). By hypothesis, $G = D \rtimes M$, where $D = G^\mathfrak{F}$ is a Hall subgroup of G, D possesses a Sylow tower and M acts irreducibly on every M-invariant Sylow subgroup of D. Let $\pi = \pi(D)$. Then G is π-soluble.

First we show that every subgroup A of G containing M is a Hall subgroup of G. If $A = M$, it is clear. Now assume that $M < A$ and let $D_0 = D \cap A$. Then $A = D_0 \rtimes M$ and $D_0 \neq 1$. Let $p \in \pi(D_0) \subseteq \pi$, $\pi_0 = \{p \cup \pi'\}$ and $\pi_1 = \pi \setminus \{p\}$. Thus, if $H < D_0 \rtimes M$ is a p-complement of A in G, then $H \not\in D_0 \rtimes \mathfrak{F}$, hence $H \not\in D_0 \rtimes \mathcal{F}$. Therefore $H \not\in D_0 \rtimes \mathfrak{F}$, contrary to our assumption on H.

Hence G is K-\mathfrak{F}-subnormal in G. By Claim (4), G possesses a Sylow tower. Therefore G is $H_\mathcal{L}$-embedded in G.
The Frattini Argument implies that for some Sylow p-subgroup P_0 of D_0 we have $M \leq N_G(P_0)$. Moreover, G is evidently π_1-soluble and so, by Theorem 3.6 in [20, Chapter 6], for some Sylow p-subgroup P of D we have $P_0M \leq PM = MP$, where $P = PM \cap D$, so $M \leq N_G(P)$. But M acts irreducibly on every M-invariant Sylow subgroup of D, so $P_0 = P$. Therefore every Sylow subgroup of A is a Sylow subgroup of G. Hence A is a Hall subgroup of G.

Now let A be any subgroup of G. First assume that $DA \leq G$. Since $G/D \in \mathfrak{F}$ and the formation \mathfrak{F} is hereditary by our assumption on \mathfrak{F}, the subgroup DA/D is K-\mathfrak{F}-subnormal in G/D and so DA is K-\mathfrak{F}-subnormal in G by Lemma 2.1(3). Therefore DA has the structure S_3 by hypothesis and so A is a Hall subgroup of some K-\mathfrak{F}-subnormal subgroup W of DA by induction. But then W is a K-\mathfrak{F}-subnormal subgroup of G and so A is H_C-embedded in G.

Finally, assume that $DA = G$. Since G and A are π-soluble, for some x we have $M \leq A^x$ and so from the above we get that A^x is a Hall subgroup of G, so A^x and A are H_C-embedded in G. Therefore the sufficiency of the condition of the theorem is proved.

The theorem is proved.

3. Proof of Theorem 1.2

We use $Z_\mathfrak{F}(G)$ to denote the product of all normal subgroups A of G such that either $A = 1$ or every chief factor of G below A is \mathfrak{F}-central in G.

Lemma 3.1 (See Theorem 2.7 in [21, Ch. 1]). Let $Z = Z_\mathfrak{F}(G)$ and let N be a normal subgroup of G contained in Z. Then

1. $N \in \mathfrak{F}$ and $Z/N = Z_\mathfrak{F}(G/N)$.
2. Moreover, if $G/Z \in \mathfrak{F}$, then $G \in \mathfrak{F}$.

The following lemma is a corollary of Lemmas 2.1(3) and 3.1(1).

Lemma 3.2. Every subgroup $A \in L_{\mathfrak{F}}(G)$ is K-\mathfrak{F}-subnormal in G.

Proof of Theorem 1.2. (1) Let p be a prime dividing $|D|$. Suppose that for a Sylow p-subgroup P of D we have $p < |P|$. By hypothesis, G possesses an H_C-embedded subgroup A of order $p|G|^{1/p}$. Then A is a Hall subgroup of some subgroup $E \in L_{\mathfrak{F}}(G)$. It is clear that $A = E$, so $A^G/A_G \leq Z_\mathfrak{F}(G/A_G)$. On the other hand, G/A^G is a p-group and hence $G/A^G \in \mathfrak{F}$ since \mathfrak{F} contains all nilpotent groups by our assumption on \mathfrak{F}, so $G/A_G \in \mathfrak{F}$ by Lemma 3.1. It follows that $D \leq A_G \leq A$ and so $|P| \leq p$, a contradiction. Hence $|D|$ is square free. Therefore D is supersoluble by [22, IV, Satz 2.8], so the Sylow p-subgroup P of D, where p is the largest prime dividing $|D|$, is normal and so characteristic in D. Hence P is normal in G and $G/C_G(P)$ is cyclic since $|P|$ is a prime, which implies $D \leq C_G(P)$. Therefore $P \leq Z(D)$, so for a p-complement D_0 of D we have $D = P \times D_0$ in D, where D_0 is characteristic in D and so normal in G. Similarly, we can show that for some prime q dividing $|D_0|$ and for a Sylow q-subgroup Q of D_0 we have $Q \leq Z(D_0)$, which implies that Q has a normal complement in D_0 and so on. Therefore D is a cyclic group of square free order. Finally, if 2 divides $|D|$ and Q is the Sylow 2-subgroup of D and L is the 2-complement of D, then $C_G(Q) = G$.
Finite groups with H_L-embedded subgroups

since $|Q| = 2$ and so $G/L \in \mathcal{F}$ by Lemma 3.1(2) since \mathcal{F} contains all nilpotent groups. But then $D \leq L < D$, a contradiction. Therefore $|D|$ is odd.

(2) We prove this statement by induction on $|G|$. First note that if M is a minimal supplement to D in G, then $M \cap D \leq \Phi(M)$ and so $M \in \mathcal{F}$ since \mathcal{F} is saturated and $M/(M \cap D) \simeq G/D \in \mathcal{F}$. On the other hand, for the complement L of $M \cap D$ in D we have $L \leq G$ (since L is cyclic of square free order) and $G/L = DM/L = L(M \cap D)/M/L \simeq M \in \mathcal{F}$, so $L = D$ and hence M is a complement to D in G. Therefore for each integer r dividing $|M|$ there exists a subgroup of M of order r.

Let d be any integer dividing $|G|$, $\pi = \pi(d)$ and $\pi_1 = \pi \cap \pi(D)$. Assume that $\pi_1 = \emptyset$. Then d divides $|M| = [G/D]$ and a subgroup H of M of order d is a Hall subgroup in $D H$, where $D H \in \mathcal{L}$ since $D \leq (D H G)G$ and $G/D \in \mathcal{F}$. Hence H is $H_{\mathcal{L}}$-embedded in G.

Now assume that $\pi_1 \neq \emptyset$. Suppose that for some $p \in \pi_1$ the prime p divides $d : p$ and let L be the subgroup of order p in D. Then, by induction, G/L possesses an $H_{\mathcal{L}}$-embedded subgroup V/L of order $d : p$. Let E/L be a subgroup of G/L such that $E/L \in \mathcal{L}_G(G/L)$ and V/L is a Hall subgroup of E/L. Then, in view of the G-isomorphism

$$E^{G}/E_G \simeq (E^{G}/L)/((E_G/L) = (E/L)^{G/L}/(E/L)_{G/L},$$

$E \in \mathcal{L}_G(G)$, and V is a Hall subgroup of E since $\pi(V/L) = \pi(V)$. Hence $|V| = d$ and V is $H_{\mathcal{L}}$-embedded in G.

Finally, assume that for each $p \in \pi_1$ the prime p does not divide $d : p$, that is, $d = p_1 \cdots p_l q_1^{\alpha_1} \cdots q_n^{\alpha_n}$, where $\pi_1 = \{p_1, \ldots, p_l\}$ and $\{q_1, \ldots, q_n\} = \pi \setminus \pi_1$. Let A be a subgroup of M of order $q_1^{\alpha_1} \cdots q_n^{\alpha_n}$, B the subgroup of D of order $p_1 \cdots p_l$ and $H = AB$. Then $|H| = d$ and H is a Hall subgroup of the subgroup $DA \in \mathcal{L}$. Hence H is $H_{\mathcal{L}}$-embedded in G. Therefore the statement (2) holds for G.

(3) First we show by induction on $|G|$ that if every subgroup H of G is $H_{\mathcal{L}}$-embedded in G, then D is a Hall cyclic subgroup of odd square free order. If $G \in \mathcal{F}$, it is true. Now assume that $G \notin \mathcal{F}$. Then, in view of Lemma 3.2 and Theorem 1.8, $G = D \times M$, where D is a Hall subgroup of G and every chief factor of G below D is \mathcal{F}-eccentric. Moreover, D possesses a Sylow tower and M acts irreducibly on every M-invariant Sylow subgroup of D. Let p be a prime dividing $|D|$ such that a Sylow p-subgroup P of D is normal in D and so it is normal in G. Then P is a minimal normal subgroup of G since M acts irreducibly on P.

We show that the hypothesis holds for G/P. Let H/P be any subgroup of G/P. Then H is a Hall subgroup of some subgroup $E \in \mathcal{L}$ by hypothesis, so H/P is a Hall subgroup of E/P. Moreover, in view of the G-isomorphism $E^{G}/E_G \simeq (E/P)^{G/P}/((E/P)_{G/P}$ we get that every chief factor of G/P between $(E/P)_{G/P}$ and $(E/P)^{G/P}$ is \mathcal{F}-central in G/P, so $E/P \in \mathcal{L}_G(G/P)$. Therefore H/P is $H_{\mathcal{L}_{G/P}}$-embedded in G/P, where $G/P \in \mathcal{L}_{G/P}$. Therefore the hypothesis holds for G/P. On the other hand, $D/P = (G/P)^{G/P}$. Therefore D/P is a cyclic group of odd square free order by induction.

Assume that $|P| > p$ and let L be a subgroup of order p in P. Then L is a Sylow p-subgroup of some subgroup $E \in \mathcal{L}$, so $L = P \cap E$. Hence $P \notin E_G$, so $P \cap E_G = 1$
since P is a minimal normal subgroup of G. On the other hand, $L \leq E \leq E^G$ and so $P \leq E^G$. From the G-isomorphism $P \cong E^G P / E^G$ it follows that $P / 1$ is \mathfrak{F}-central in G. This contradiction shows that $|P| = p$, so D is of square free order. Then $G/C_G(P)$ is cyclic, so $D \leq C_G(P)$ and hence $P \leq Z(D)$. It follows that D is nilpotent and so it is a cyclic subgroup of square free order. Moreover, $|D|$ is odd (see the proof of Statement (1)).

Now assume that D is a cyclic Hall subgroup of square free order of G and let A be any subgroup of G. Let M be a complement of D in G. Then $A = (D \cap A)(M^x \cap A)$ for some $x \in G$, so A is a Hall subgroup of $E := D(M^x \cap A)$. On the other hand, $D \leq E_G$ and so $E \in \mathcal{L}$. Hence A is H_L-embedded in G.

The theorem is proved.

ACKNOWLEDGMENT

The authors are very grateful to the helpful suggestions of the referee.

The research of Bin Hu and Jianhong Huang is supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013)

REFERENCES

Finite groups with H_L-embedded subgroups

Received submission date; revised revision date