On the generalized σ-Fitting subgroup of finite groups

BIN HU* – JIANHONG HUANG**– ALEXANDER N. SKIBA

ABSTRACT – Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set \mathbb{P} of all primes, and let G be a finite group. A chief factor H/K of G is said to be σ-central (in G) if the semidirect product $(H/K) \rtimes (G/C_{G}(H/K))$ is a σ_i-group for some $i \in \{H/K\}$; otherwise, it is called σ-eccentric (in G). We say that G is: σ-nilpotent if every chief factor of G is σ-central; σ-quasinilpotent if for every σ-eccentric chief factor H/K of G, every automorphism of H/K induced by an element of G is inner. The product of all normal σ-nilpotent (respectively σ-quasinilpotent) subgroups of G is said to be the σ-Fitting subgroup (respectively the generalized σ-Fitting subgroup) of G and we denote it by $F_{\sigma}(G)$ (respectively by $F_{\sigma}^{*}(G)$). Our main goal here is to study the relations between the subgroups $F_{\sigma}(G)$ and $F_{\sigma}^{*}(G)$, and the influence of these two subgroups on the structure of G.

KEYWORDS. finite group, σ-nilpotent group, σ-quasinilpotent group, σ-Fitting subgroup, generalized σ-Fitting subgroup.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is

*Research is supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).

**Corresponding author.

Bin Hu, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, P.R. China
E-mail: hubin118@126.com
Jianhong Huang, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, P.R. China
E-mail: jhh320@126.com
Alexander N. Skiba, Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel, 246019, Belarus
E-mail: alexander.skiba49@gmail.com
an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i|i \in I\}$ is some partition of \mathbb{P}, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. We say that: G is σ-primary [1] provided it is a σ_i-group for some i; an automorphism α of G is σ_i-primary if $\langle \alpha \rangle$ is a σ_i-subgroup of $\text{Aut}(G)$.

In the mathematical practice, we often deal with the following three special partitions of \mathbb{P}:

- $\sigma^1 = \{\{2\}, \{3\}, \ldots\}$, $\sigma^\pi = \{\pi, \pi'\}$, and $\sigma^1\pi = \{\{p_i\}, \ldots, \{p_n\}, \pi\}$, where $\pi = \{p_1, \ldots, p_n\}$.

The group G is called: σ-soluble [1] if every chief factor of G is σ-primary; σ-decomposable [2] or σ-nilpotent [3] if $G = G_1 \times \cdots \times G_n$ for some σ-primary groups G_1, \ldots, G_n.

Remark 1.1. (i) G is: soluble if and only if G is σ^1-soluble, π-soluble if and only if G is σ^π-soluble.

(ii) Let $G \neq 1$ and $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$. Without loss of generality we can assume that $\sigma(G) = \{\sigma_1, \ldots, \sigma_t\}$. Then G is σ-nilpotent if and only if $G = O_{\sigma_1}(G) \times \cdots \times O_{\sigma_t}(G)$. Thus, G is: σ^1-nilpotent if and only if it is nilpotent, σ^π-nilpotent if and only if $G = O_{\sigma_1}(G) \times O_{\sigma}(G)$, $\sigma^1\pi$-nilpotent if and only if $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\sigma}(G)$.

Let H/K be a chief factor of G. Then we say that H/K is σ-central (in G) [1] if the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is σ-primary; otherwise, it is called σ-eccentric (in G). A normal subgroup E of G is said to be σ-hypercentral (in G) if either $E = 1$ or every chief factor of G below E is σ-central in G.

The σ-nilpotent groups have many applications in the formation theory [2, 4, 5, 6] (see also the recent papers [1, 3, 7, 8, 9, 10, 11] and the survey [12]), and such groups are exactly the groups whose chief factors are σ-central (see Proposition 2.3 in [1]).

In this paper, we consider the following generalization of σ-nilpotency.

Definition 1.2. We say that G is σ-quasinilpotent if given any σ-eccentric chief factor H/K of G, every automorphism of H/K induced by an element of G is inner (cf. [13, X, Definition 13.2]).

Note that G is called quasinilpotent if given any chief factor H/K of G, every automorphism of H/K induced by an element of G is inner. Therefore G is quasinilpotent if and only if it is σ^1-quasinilpotent.

Let $Z_\sigma(G)$ denote the product of all normal σ-hypercentral subgroups of G. It is not difficult to show (see Lemma 2.7(i) below) that $Z_\sigma(G)$ is also σ-hypercentral in G. We call the subgroup $Z_\sigma(G)$ the σ-hypercentre of G. Dually, we define the σ-nilpotent residual $G^{\sigma\text{res}}$ of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N; $G^{\sigma\text{res}}$ is the σ-soluble residual of G.

Definition 1.3. (i) The product of all normal σ-nilpotent (respectively σ-quasinilpotent) subgroups of G is said to be the σ-Fitting subgroup [1] (respectively the generalized σ-Fitting subgroup) of G and denoted by $F_\sigma(G)$ (respectively by $F^*_\sigma(G)$).
(ii) We use $E_\sigma(G)$ to denote the σ-soluble residual of $F^*_\sigma(G)$, and we say that
$E_\sigma(G)$ is the σ-layer of G (cf. [13, X, Definition 13.14]).

Note that in the case when $\sigma = \sigma^1$ the subgroups $F_\sigma(G)$, $F^*_\sigma(G)$ and $E_\sigma(G)$
coincide respectively with $F(G)$, $F^*(G)$ and $E(G)$.

Before continuing, consider some examples.

Example 1.4. Let $G = (A_5 \times A_7) \wr \langle x \rangle = K \times \langle x \rangle$, where $|x| = p > 5$ is a
prime and K is the base group of the regular wreath product G. Let $R = A_5^2$ and
$L = A_7^p$ (we use here the terminology in [15, Ch.A]). Let $\sigma = \{[2, 3, 5], \{2, 3, 5\}\}'$. Then
$K = R \times L$ and so, in view of Remark 1.1(ii), $F_\sigma(G) = R$. It is clear also that
$K \leq F^*_\sigma(G)$ and the automorphism of R induced by x is not inner. Hence
$F^*_\sigma(G) = K$. Finally, $E_\sigma(G) = L$ and $E(G) = K$.

We say that G is: σ-perfect if $G^{\sigma^p} = G$; σ-semisimple if either $G = 1$ or
$G = A_1 \times \cdots \times A_t$ is the direct product of simple non-σ-primary groups A_1, \ldots, A_t.

Example 1.5. Let $G = (A_5 \wr A_7) \times (A_7 \times A_{11})$ and $\sigma = \{[2, 3, 5], \{2, 3, 5\}\}'$. Then
G is σ-quasinilpotent but G is not σ-nilpotent. The group $A_7 \times A_{11}$ is
σ-semisimple and σ-perfect.

A subgroup A of G is σ-subnormal in G [1] if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1}A_i)$ is σ-primary
for all $i = 1, \ldots, n$. Note that A is normal in G if and only if it is σ^1-subnormal
in G.

In this paper, we study properties and relations between the subgroups $F_\sigma(G)$,
$F^*_\sigma(G)$ and $E_\sigma(G)$. Our main observations here are the following two results
which, in particular, show that the subgroup $F^*_\sigma(G)$ has properties similar to the
properties of the generalized Fitting subgroup $F^*(G)$ of G (see Section 4 below
and Ch.X in [13]).

Theorem A. The following statements hold:

(i) $F_\sigma(G)$ is the largest normal σ-nilpotent subgroup of G and $F^*_\sigma(G)$ is the
largest normal σ-quasinilpotent subgroup of G.

(ii) A σ-subnormal subgroup A of G is contained in $F^*_\sigma(G)$ (respectively in
$F_\sigma(G)$) if and only if A is σ-quasinilpotent (respectively σ-nilpotent). Hence
$F^*_\sigma(G) \cap A = F^*_\sigma(A)$ and $F_\sigma(G) \cap A = F_\sigma(A)$.

In the case when $\sigma = \sigma^1$, we get from Theorem A(ii) the following

Corollary 1.6 (See [13, X, Theorem 13.10]). $F^*(G)$ is quasinilpotent and
every subnormal quasinilpotent subgroup of G is contained in $F^*(G)$.

Theorem B. Let $F = F_\sigma(G)$, $F^* = F^*_\sigma(G)$, and $E = E_\sigma(G)$. Then the
following statements hold:

(i) $F = Z_\sigma(F^*)$ and F^*/F is σ-semisimple.

(ii) $F^* = EF$ and $F = C_{F^*}(E)$, so $F^* = C_{F^*}(F)F$. Also $E \cap F = Z(E)$, E
is σ-perfect and $E/Z(E)$ is σ-semisimple.

(iii) $F/Z_\sigma(G) = F_\sigma(G/Z_\sigma(G))$ and $F^*/Z_\sigma(G) = F^*_\sigma(G/Z_\sigma(G))$.

(iv) Every σ-perfect σ-quasinilpotent σ-subnormal subgroup H of G is con-
tained in $E_\sigma(G)$. Moreover, $E_\sigma(E_\sigma(G)) = E_\sigma(G)$.

As a first application of Theorems A and B, we prove also the following

Theorem C. G is σ-quasinilpotent if and only if given any σ-eccentric chief
factor H/K of G below $F^*(G)$, every automorphism of H/K induced by an element of G is inner.

In the case when $\sigma = \sigma^1$, we get from Theorem C the following

Corollary 1.7. G is quasinilpotent if and only if given any chief factor H/K of G below $F^*(G)$, every automorphism of H/K induced by an element of G is inner.

Let H/K be a chief factor of G. We define the σ-centralizer $C^\sigma_G(H/K)$ of H/K in G: $C^\sigma_G(H/K) = C_G(H/K)$ if H/K is not σ-primary, and $C^\sigma_G(H/K) = O_{\sigma_i}(G)C_G(H/K)$ in the case when H/K is σ-primary.

Now, by analogy with the inneriser of H/K (see [6, p.41]), we define the σ-inneriser $C^\sigma_G(H/K)$ of H/K in G: $C^\sigma_G(H/K) = HC_G^\sigma(H/K)$ if H/K is not σ-primary, and $C^\sigma_G(H/K) = C^\sigma_G(H/K)$ in the case when H/K is σ-primary.

As one more application of Theorems A and B we prove the following

Theorem D. (i) The subgroup $F_\sigma(G)$ coincides with the intersection of the σ-centralizers of the chief factors of G.

(ii) The subgroup $F^*_\sigma(G)$ coincides with the intersection of the σ-innerisers of the chief factors of G.

Corollary 1.8 (Ballester-Bolinches and Ezquerro [6, p.97]). The subgroup $F^*(G)$ coincides with the intersection of the innerisers of the chief factors of G.

In Section 4 we discuss further applications of Theorems A and B.

2. Preliminaries

Lemma 2.1. (i) If $K \leq L < T = H \leq E \leq G$, where H/K is a chief factor of G and T/L is a chief factor of E, and an element $x \in E$ induces an inner automorphism on H/K, then x induces an inner automorphism on T/L. Moreover, if $H/K = (H_1/K) \times \cdots \times (H_t/K)$, where $H_1/K, \ldots, H_t/K$ are normal subgroups of E/K and x induces inner automorphisms on these factors, then x induces an inner automorphism on H/K.

(ii) If G is a σ-quasinilpotent group and N is a normal subgroup of G, then N and G/N are σ-quasinilpotent.

(iii) If G/N and G/L are σ-quasinilpotent, then $G/(N \cap L)$ is also σ-quasinilpotent.

Proof. (i) See the proof of Lemma 13.1 in [13, X].

(ii), (iii) See the proof of Lemma 13.3 in [13, X].

Lemma 2.2. Let H/K be a chief factor of G. Then every automorphism of H/K induced by an element of G is inner if and only if $G/K = (H/K)C_G(K)H/K$.

Proof. See the proof of Lemma 13.4 in [13, X].

Lemma 2.3 (see Proposition 2.3 in [1]). The following are equivalent:

(i) G is σ-nilpotent.

(ii) G has a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that $G = H_1 \times \cdots \times H_t$.

(iii) Every chief factor of G is σ-central in G.

Lemma 2.4. Let N be a normal σ_i-subgroup of G. Then $N \leq Z_\sigma(G)$ if and only if $O^{\sigma_i}(G) \leq C_G(N)$.
On the generalized σ-Fitting subgroup of finite groups

Proof. If $O^{\sigma}(G) \leq C_G(N)$, then for every chief factor H/K of G below N both groups H/K and $G/C_G(H/K)$ are σ-group since $G/O^{\sigma}(G)$ is a σ-group. Hence $(H/K) \rtimes (G/C_G(H/K))$ is σ-primary. Thus $N \leq Z_\sigma(G)$.

Now assume that $N \leq Z_\sigma(G)$. Let $1 = Z_0 < Z_1 < \ldots < Z_t = N$ be a chief series of G below N and $C_1 = C_G(Z_t/Z_{t-1})$. Let $C = C_1 \cap \cdots \cap C_t$. Then G/C is a σ-group. On the other hand, $C/C_G(N) \simeq A \leq \text{Aut}(N)$ stabilizes the indices $1 = Z_0 < Z_1 < \ldots < Z_t = N$, so $C/C_G(N)$ is a $\pi(N)$-group by Theorem 0.1 in [14]. Hence $G/C_G(N)$ is a σ-group and so $O^{\sigma}(G) \leq C_G(N)$.

The lemma is proved.

The next two lemmas are evident.

Lemma 2.5. G^{σ_σ} is σ-perfect.

Lemma 2.6. If H/K and T/L are G-isomorphic chief factors of G, then:

(i) $(H/K) \rtimes (G/C_G(H/K)) \simeq (T/L) \rtimes (G/C_G(T/L))$, and

(ii) $C_G(H/K) = C_G(T/L)$.

(iii) $C_G^{\sigma}(H/K) = C_G^\sigma(T/L)$.

We write $\sigma(G) = \{\sigma_i \cap \pi(G) \neq \emptyset\}$, and we say that G is a Π-group provided $\sigma(G) \subseteq \Pi \subseteq \sigma$.

Lemma 2.7. Let $Z = Z_\sigma(G)$. Let A, B and N be subgroups of G, where N is normal in G.

(i) Z is σ-hypercentral in G.

(ii) $Z_\sigma(A)/N \leq Z_\sigma(AN/N)$.

(iii) $Z_\sigma(B) \cap A \leq Z_\sigma(B \cap A)$.

(iv) If $N \leq Z$ and N is a Π-group, then N is σ-nilpotent and $G/C_G(N)$ is a σ-nilpotent Π-group.

(v) If G/Z is σ-nilpotent, then G is also σ-nilpotent.

(vi) If $N \leq Z$, then $Z/N \simeq Z_\sigma(G/N)$.

(vii) If $G = A \times B$, then $Z = Z_\sigma(A) \times Z_\sigma(B)$.

Proof. (i) It is enough to consider the case when $Z = A_1A_2$, where A_1 and A_2 are normal σ-hypercentral subgroups of G. Moreover, in view of the Jordan-Hölder theorem, it is enough to show that if $A_1 \leq K \leq H \leq A_1A_2$, then H/K is σ-central. But in this case we have $H = A_1(H \cap A_2)$, where evidently $H \cap A_2 \not\leq K$, so we have the G-isomorphism $(H \cap A_2)/(K \cap A_2) \simeq (H \cap A_2)/K = H/K$, and hence H/K is σ-central in G by Lemma 2.6.

(ii) First assume that $G = A$, and let H/K be a chief factor of G such that $N \leq K < H \leq NZ$. Then H/K is G-isomorphic to the chief factor $(H \cap Z)/(K \cap Z)$ of G below Z. Therefore H/K is σ-central in G by Assertion (i) and Lemma 2.6. Consequently, $ZN/N \leq Z_\sigma(G/N)$.

Now let A be any subgroup of G, and let $f : A/AN \to AN/N$ be the canonical isomorphism from $A/A \cap N$ onto AN/N. Then $f(Z_\sigma(A/A \cap N)) = Z_\sigma(AN/N)$ and $f(Z_\sigma(A/A \cap N)/(A \cap N)) = Z_\sigma(AN/N)$. Hence, in view of the preceding paragraph, we have $Z_\sigma(A/A \cap N)/(A \cap N) \leq Z_\sigma(A/A \cap N)$.

Hence \(Z_\sigma(A)N/N \leq Z_\sigma(AN/N) \).

(iii) First assume that \(B = G \), and let \(1 = Z_0 < Z_1 < \ldots < Z_t = Z \) be a chief series of \(G \) below \(Z \) and \(C_i = C_G(Z_i/Z_{i-1}) \). Now consider the series

\[
1 = Z_0 \cap A \leq Z_1 \cap A \leq \ldots \leq Z_t \cap A = Z \cap A.
\]

We can assume without loss of generality that this series is a chief series of \(A \) below \(Z \cap A \).

Let \(i \in \{1, \ldots, t\} \). Then, by Assertion (i), \(Z_i/Z_{i-1} \) is \(\sigma \)-central in \(G \), \((Z_i/Z_{i-1}) \times (G/C_i) \) is a \(\sigma_k \)-group say. Hence \((Z_i \cap A)/(Z_{i-1} \cap A) \) is a \(\sigma_k \)-group. On the other hand, \(A/A \cap C_i \asymp C_iA/C_i \) is a \(\sigma_k \)-group and

\[
A \cap C_i \leq C_A((Z_i \cap A)/(Z_{i-1} \cap A)).
\]

Thus \((Z_i \cap A)/(Z_{i-1} \cap A) \) is \(\sigma \)-central in \(A \). Therefore, in view of the Jordan-Hölder theorem for the chief series, we have \(Z \cap A \leq Z_\sigma(A) \).

Now assume that \(B \) is any subgroup of \(G \). Then, in view of the preceding paragraph, we have

\[
Z_\sigma(B) \cap A = Z_\sigma(B) \cap (B \cap A) \leq Z_\sigma(B \cap A).
\]

(iv) By Assertion (iii) and Lemma 2.3, \(N \) is \(\sigma \)-nilpotent, and it has a complete Hall \(\sigma \)-set \(\{H_1, \ldots, H_t\} \) such that \(N = H_1 \times \cdots \times H_t \). Then

\[
C_G(N) = C_G(H_1) \cap \cdots \cap C_G(H_t).
\]

It is clear that \(H_1, \ldots, H_t \) are normal in \(G \). We can assume without loss of generality that \(H_i \) is a \(\sigma_i \)-group. Then, by Assertion (i) and Lemma 2.4, \(G/C_G(H_i) \) is a \(\sigma_i \)-group. Hence

\[
G/C_G(N) = G/(C_G(H_1) \cap \cdots \cap C_G(H_t))
\]

is a \(\sigma \)-nilpotent II-group.

(v), (vi) These assertions are corollaries of Assertion (i) and the Jordan-Hölder theorem.

(vii) Let \(Z_1 = Z_\sigma(A) \) and \(Z_2 = Z_\sigma(B) \). Since \(Z_1 \) is characteristic in \(A \), it is normal in \(G \).

First assume that \(Z_1 \neq 1 \) and let \(R \) be a minimal normal subgroup of \(G \) contained in \(Z_1 \). Then \(R \) is \(\sigma \)-primary, \(R \) is a \(\sigma \)-group say, by Assertion (iv). Hence \(A/C_A(R) \) is a \(\sigma \)-group by Lemma 2.4. But \(C_G(R) = B(C_G(R) \cap A) = BC_A(R) \), so

\[
G/C_G(R) = AB/C_A(R)B \simeq A/(A \cap C_A(R)B) = A/C_A(R)(A \cap B) = A/C_A(R)
\]

is a \(\sigma \)-group and hence \(R \) is \(\sigma \)-central in \(G \). Then \(R \leq Z_\sigma(G) \), so \(Z_\sigma(G)/R = Z_\sigma(G/R) \) by Assertion (vi). On the other hand, we have \(Z_1/R = Z_\sigma(A/R) \) and \(Z_2R/R = Z_\sigma(BR/R) \), so by induction we have

\[
Z_\sigma(G/R) = Z_\sigma((A/R) \times (BR/R)) = Z_\sigma(A/R) \times Z_\sigma(BR/R)
\]
Moreover, the choice of \cap is σ-semisimple by hypothesis. Then $R/\cap = G/\cap = 1$ is a σ-semisimple group, so $Z(G/\cap) = 1$, a contradiction. Hence we have (vii).

The lemma is proved.

Lemma 2.8. Given a group G the following are equivalent:

(i) G is σ-quasinilpotent.

(ii) $G/\sigma(G)$ is σ-semisimple.

(iii) $G = E_\sigma(G)F_\sigma(G)$ and $[E_\sigma(G), F_\sigma(G)] = 1$. Hence $E_\sigma(G)/(E_\sigma(G) \cap F_\sigma(G)) = E_\sigma(G)/Z(E_\sigma(G))$ is σ-semisimple.

(iv) $G/F_\sigma(G)$ is σ-semisimple and $G = F_\sigma(G)C_G(F_\sigma(G))$.

Proof. Let $Z = Z_\sigma(G)$, $F = F_\sigma(G)$ and $E = E_\sigma(G)$.

(i) \Rightarrow (ii) Assume that this is false and let G be a counterexample of minimal order. Then the hypothesis holds for G/Z by Lemma 2.1(ii). On the other hand, $Z_\sigma(G/Z) = 1$ by Lemma 2.7(vi). Hence in the case when $Z \neq 1$, $G/Z_\sigma(G)$ is σ-semisimple by the choice of G.

Now assume that $Z = 1$ and let R be any minimal normal subgroup of G. Then $R/1$ is a σ-eccentric chief factor of G, so $G = RC_G(R)$ by Lemma 2.2. Therefore, since $Z(G) \leq 1$, $C_G(R) \neq G$ and hence R is σ-semisimple. Thus $G = R \times C_G(R)$. Therefore $Z_\sigma(R) \times Z_\sigma(C_G(R)) = Z_\sigma(G) = 1$ by Lemma 2.7(vii). Moreover, the choice of G implies that $C_G(R)$ is σ-semisimple, so $G \simeq G/Z = G/1$ is σ-semisimple and hence Assertion (ii) is true, a contradiction.

(ii) \Rightarrow (i) Let H/K be a chief factor of G. If $H \leq Z_\sigma(G)$, then H/K is σ-central in G by Lemma 2.7(i). Now suppose that $Z_\sigma(G) \leq K$. Since $G/Z_\sigma(G)$ is σ-semisimple by hypothesis, every automorphism of H/K induced by an element of G is inner by Lemma 2.2. Hence applying the Jordan-Hölder theorem, for every σ-eccentric chief factor H/K of G, every automorphism of H/K induced by an element of G is inner and so G is σ-quasinilpotent.

(iii) \Rightarrow (iv) First note that $Z \leq F$ by Lemma 2.7(iv), so $Z = F$ since G/Z is σ-semisimple by hypothesis. Then $G = E_\sigma(G)F_\sigma(G)$ is σ-nilpotent. Hence $E \leq C_G(F)$, so $[E, F] = 1$. Lemma 2.7(iii) implies that $Z \cap E = F \cap E \leq Z_\sigma(E)$, so $E/F \cap E$ is σ-semisimple and $F \cap E = Z(E)$.

(iii) \Rightarrow (iv) This implication is evident.

(iv) \Rightarrow (i) Let H/K be a chief factor of G. If $F_\sigma(G) \leq K$, then every automorphism of H/K induced by an element of G is inner by Lemma 2.2 since $G/F_\sigma(G)$ is σ-semisimple by hypothesis. Now suppose that $H \leq F_\sigma(G)$. Then

$$C_G(H/K) = C_G(H/K) \cap F_\sigma(G)C_G(F_\sigma(G)) = C_G(F_\sigma(G))C_{F_\sigma(G)}(H/K),$$

so

$$G/C_G(H/K) = F_\sigma(G)C_{F_\sigma(G)}(H/K)\cap C_G(F_\sigma(G))C_{F_\sigma(G)}(H/K) \simeq F_\sigma(G)/F_\sigma(G) \cap C_G(F_\sigma(G))C_{F_\sigma(G)}(H/K) = F_\sigma(G)/C_{F_\sigma(G)}(H/K)Z(F_\sigma(G))$$
is σ-primary by Lemma 2.4. Therefore H/K is σ-central in G. Now applying the Jordan-Hölder theorem, we get that for every σ-eccentric chief factor H/K of G, every automorphism of H/K induced by an element of G is inner. Hence G is σ-quasinilpotent.

The lemma is proved.

Lemma 2.9 (See Lemma 2.6 in [1]). Let A, K and N be subgroups of G. Suppose that A is σ-subnormal in G and N is normal in G.

1. $A \cap K$ is σ-subnormal in K.
2. If K is σ-subnormal in G, then $K \cap A \leq \langle A, K \rangle$ are σ-subnormal in G.
3. If A is a σ_i-group, then $A \leq O_{\sigma_i}(G)$. Hence if A is σ-nilpotent, then $A \leq F_\sigma(G)$.
4. AN/N is σ-subnormal in G/N.

Lemma 2.10 (See Corollary 2.4 and Lemma 2.5 in [1]). The class of all σ-nilpotent groups \mathfrak{R}_{σ} is closed under taking products of normal subgroups, homomorphic images and subgroups.

Lemma 2.11. If G is σ-semisimple and A is a σ-subnormal subgroup of G, then A is σ-semisimple.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then $G = A_1 \times \cdots \times A_t$ for some simple non-σ-primary groups A_1, \ldots, A_t. Then A_1, \ldots, A_t are non-abelian.

By hypothesis, there is a chain $A = A_0 \leq A_1 \leq \cdots \leq A_t = G$ of subgroups of G such that either A_i/A_{i-1} is normal in A_i or $A_i/(A_{i-1})A_i$ is σ-primary for all $i = 1, \ldots, t$. Let $M = A_{t-1}$. Without loss of generality we can assume that $M < G$. Suppose that $A \leq M_G$. Then A is σ-subnormal in M_G by Lemma 2.9(1). On the other hand, M_G is σ-semisimple by [15, Ch.A, 4.13(b)], and so A is σ-semisimple by the choice of G.

This contradiction shows that $A \not\leq M_G$, so G/M_G is σ-primary. But each chief factor of G is not σ-primary by the Jordan-Hölder theorem. This contradiction completes the proof of the lemma.

3. Proofs of Theorems A, B, C and D

Proof of Theorem A. (i) From Lemma 2.10, it follows that $F_\sigma(G)$ is the largest normal σ-nilpotent subgroup of G. In order to prove that $F_\sigma(G)$ is the largest normal σ-quasinilpotent subgroup of G, it is enough to show if $G = AB$, where A and B are normal σ-quasinilpotent subgroups of G, then G is σ-quasinilpotent. Assume that this is false and let G be a counterexample of minimal order. Let R be a minimal normal subgroup of G and $C = C_G(R)$. By Lemma 2.1(ii), the hypothesis holds for G/R, so the choice of G implies that G/R is σ-quasinilpotent. Therefore in view of Lemma 2.1(iii), R is a unique minimal normal subgroup of G.

Let $Z_1 = Z_\sigma(A)$ and $Z_2 = Z_\sigma(B)$. If $A \cap B = 1$, then $Z_\sigma(G) = Z_1 \times Z_2$ by
Lemma 2.7(vii). On the other hand, A/Z_1 and B/Z_2 are σ-semisimple by Lemma 2.8, so

$$G/Z = (A \times B)/(Z_1 \times Z_2) \simeq (A/Z_1) \times (B/Z_2)$$

is σ-semisimple. Hence G is σ-quasinilpotent by Lemma 2.8. Therefore $A \cap B \neq 1$, so $R \leq A \cap B$. First assume that R is σ-primary, R is a σ_i-group say. Then by Lemma 2.8, $R \leq Z_1 \cap Z_2$ and so $AC/C \simeq A/A \cap C$ and $BC/C \simeq B/B \cap C$ are σ_i-groups by Lemma 2.4. Hence $G/C = (AC/C)(BC/C)$ is a σ_i-group, so R is σ-central in G. Therefore $R \leq Z_\sigma(G)$ and so $Z_\sigma(G/R) = Z_\sigma(G)/R$ by Lemma 2.7(vi). Thus G is σ-quasinilpotent by Lemma 2.8.

Thus R is not σ-primary. Hence R is non-abelian, so $C = 1$. Then $R = R_1 \times \cdots \times R_t$, where R_1, \ldots, R_t are minimal normal subgroups of A, so all these groups are simple by Lemma 2.8 and hence R_1, \ldots, R_t are minimal normal subgroups of B. But then, by Lemma 2.2, $R_1 = R = A = B = G$ is σ-semisimple. Hence G is σ-quasinilpotent.

(ii) Let A be any σ-subnormal subgroup of G. First note that in view of Lemmas 2.9(3) and 2.10, A is contained in $F_\sigma(G)$ if and only if A is σ-nilpotent.

Now we show that if A is σ-quasinilpotent, then it is contained in $F_\sigma^*(G)$.

Suppose that this is false and let G be a counterexample with $|G| + |A|$ minimal. Then for each σ-quasinilpotent σ-subnormal subgroup S of G such that $S < A$ we have $S \leq F_\sigma^*(G)$. Therefore the choice of G implies that if $A = NK$, where N and K are normal subgroups of A, then either $N = A$ or $K = A$. Lemma 2.8 implies that $A = A^\sigma N F_\sigma(A)$. Then, in view of Lemma 2.1(ii), either $F_\sigma(A) = A$ or $A^\sigma = A$. But in the former case we have $A \leq F_\sigma(G) \leq F_\sigma^*(G)$ by Lemma 2.9(3), so $A^\sigma = A$.

By hypothesis, there is a chain $A = A_0 \leq A_1 \leq \cdots \leq A_r = G$ of subgroups of G such that either A_{i-1} is normal in A_i or $A_i/(A_{i-1})_{A_i}$ is σ-primary for all $i = 1, \ldots, r$. Let $M = A_{r-1}$. Without loss of generality we can assume that $M < G$. Suppose that $A \leq M_G$. Then A is σ-subnormal in M_G by Lemma 2.9(1), so $A \leq F_\sigma^*(M_G)$ by the choice of G. Since $F_\sigma^*(M_G)$ is characteristic in M_G, it is normal in G and so $A \leq F_\sigma^*(M_G) \leq F_\sigma^*(G)$. This contradiction shows that $A \not\leq M_G$, so G/M_G is σ-primary. Hence $A/M_G \cap A \simeq AM_G/M_G$ is σ-primary and so $A = A^\sigma N \leq M_G \cap A \leq M_G$. This contradiction shows that $A \leq F_\sigma^*(G)$.

Next we show that if $A \leq F_\sigma^*(G)$, then A is σ-quasinilpotent. Let $Z = Z_\sigma(F_\sigma^*(G))$. Lemma 2.8 implies that $F_\sigma^*(G)/Z$ is σ-semisimple. On the other hand, ZA/Z is σ-subnormal in $F_\sigma^*(G)/Z$ by Lemma 2.9(4). Hence ZA/Z is σ-semisimple by Lemma 2.11. Finally, $A/A \cap Z \simeq ZA/Z$ and $A \cap Z \leq Z_\sigma(A)$ by Lemma 2.7(iii). Hence A is σ-quasinilpotent by Lemma 2.8.

Part (i) implies that $F_\sigma^*(A)$ is σ-quasinilpotent, so $F_\sigma^*(A) \leq F_\sigma^*(G) \cap A$. On the other hand, Lemma 2.9(1) and (2) implies that $F_\sigma^*(G) \cap A$ is σ-subnormal in A, so $F_\sigma^*(G) \cap A \leq F_\sigma^*(A)$. Thus $F_\sigma^*(G) \cap A = F_\sigma^*(A)$. Similarly, it can be proved that $F_\sigma(G) \cap A = F_\sigma(A)$.

The theorem is proved.

Proof of Theorem B. Let $Z = Z_\sigma(G)$. Then $Z \leq F \leq F^*$. Indeed, the first of these two inclusions follows from Lemma 2.7(iv). The second inclusion is
(i) This follows from Theorem A(i) and Lemma 2.8.
(ii) Since F^* is σ-quasinilpotent by Theorem A(i), Lemma 2.5 implies that E is σ-perfect. Moreover, Lemma 2.8 implies that the following hold: $[E, F] = 1$ and $E/E \cap F = E/Z(E)$ is σ-semisimple. It follows that $F \leq C_{F^*}(E)$, so $C_{F^*}(E) = C_{F'}(E) \cap EF = F(C_{F'}(E) \cap E) = FZ(E) = F$.
(iii) Let $V/Z = F_\sigma(G/Z)$. By Theorem A(i) and Lemma 2.10, F/Z is σ-nilpotent. Hence $F/Z \leq V/Z$, so $F \leq V$. Theorem A(i) implies that V/Z is σ-nilpotent. On the other hand, Lemma 2.7(iii) implies that $Z \leq Z_\sigma(V)$ and so V is σ-nilpotent by Lemma 2.7(v), which implies that $V \leq F$. Hence $F = V$, so $F/Z = F_\sigma(G/Z)$.

Let $V^*/Z = F_\sigma^*(G/Z)$. By Theorem A(i) and Lemma 2.1(iii), F^*/Z is σ-quasinilpotent. Hence $F^*/Z \leq V^*/Z$, so $F^* \leq V^*$. Now let $V_0/Z = Z_\sigma(V^*/Z)$. Lemma 2.7(iii) implies that $Z \leq Z_\sigma(V^*)$ and so $V_0 = Z_\sigma(V^*)$ by Lemma 2.7(vi). Hence $$(V^*/Z)/Z_\sigma(V^*/Z) = (V^*/Z)/(V_0/Z) \simeq V^*/V_0$$ is σ-semisimple by Lemma 2.8. Therefore, again by Lemma 2.8, V^* is σ-quasinilpotent and so $V^* \leq F^* \leq V^*$. Hence $F^*/Z = F_\sigma^*(G/Z)$.

(iv) By Theorem A(ii), $H \leq F^*$. On the other hand, since F^*/E is σ-nilpotent by Lemma 2.10 and H is σ-perfect by hypothesis, $H/H \cap E \simeq HE/E_\sigma(E)$ is identity. Hence $H \leq E$. Finally, E is σ-quasinilpotent by Theorem A(ii) and so $E_\sigma(E) = E$ since E is σ-perfect by Part (ii).

The theorem is proved.

Proof of Theorem C. It is enough to prove that if given any σ-eccentric chief factor H/K of G below $F_\sigma^*(G)$, every automorphism of H/K induced by an element of G is inner, then G is σ-quasinilpotent. Suppose that this is false and let G be a counterexample of minimal order.

1. If R is a minimal normal subgroup of G, then $R \leq F_\sigma^*(G)$ (This directly follows from the evident fact that every minimal normal subgroup of G is σ-quasinilpotent).
2. Every proper normal subgroup V of G is σ-quasinilpotent. Hence $G/F_\sigma^*(G)$ is a simple group.

By Theorem A(ii), $F_\sigma^*(V) = F_\sigma^*(G) \cap V$. Hence for every σ-eccentric chief factor H/K of G below $F_\sigma^*(V)$, every automorphism of H/K induced by an element of G is inner.

Now let $K \leq L < T \leq H$, where H/K is a chief factor of G below $F_\sigma^*(V)$ and T/L is a chief factor of V. Suppose that T/L is σ-eccentric in V. Then H/K is σ-eccentric in G. Indeed, assume that H/K is σ-central in G. Then H/K and $G/C_V(H/K)$ are σ_i-groups for some i. Hence T/L is a σ_i-group. On the other hand, $C_V(H/K) \cap V \leq C_V(T/L)$ and also we have $V/C_V(H/K) \simeq (V/C_V(H/K))/((C_V(T/L))/C_V(H/K))$, where $V/C_V(H/K) \simeq V/C_V(H/K)/C_V(H/K)$ is a σ_i-group. Hence $V/C_V(T/L)$ is a σ_i-group and so T/L is σ_i-central in V, a contradiction. Thus H/K is σ-eccentric in G. Hence, by hypothesis, every element of
G induces an inner automorphism on \(H/K \). Therefore every automorphism of \(T/L \) induced by an element of \(V \) is inner by Lemma 2.1(i). Thus \(V \) is \(\sigma \)-quasinilpotent.

(3) If \(R \) is a minimal normal subgroup of \(G \), then \(R \) is not \(\sigma \)-central in \(G \).

Suppose that \(R \) is \(\sigma \)-central in \(G \). Then \(R \leq Z = Z_{\sigma}(G) \) and, by Theorem B(iii), \(F_{\sigma}^{*}(G/Z) = F_{\sigma}^{*}(G)/Z \). Now let \((H/Z)/(K/Z) \) be a chief factor of \(G/Z \) below \(F_{\sigma}^{*}(G/Z) \). Then \(H/K \) is a chief factor of \(G \) below \(F_{\sigma}^{*}(G) \). Moreover, if \((H/Z)/(K/Z) \) is \(\sigma \)-eccentric in \(G/Z \), then \(H/K \) is \(\sigma \)-eccentric in \(G \) and so every element \(x \in G \) induces an inner automorphism on \(H/K \). Then \(xZ \) induces an inner automorphism on \((H/Z)/(K/Z) \). Therefore the hypothesis holds for \(G/Z \), so the choice of \(G \) implies that \(G/Z \) is \(\sigma \)-quasinilpotent. But then \(G \) is \(\sigma \)-quasinilpotent by Lemmas 2.7(vi) and 2.8, contrary to the choice of \(G \). Hence we have (3).

Final contradiction. Let \(R \) be a minimal normal subgroup of \(G \). Then \(R \leq F_{\sigma}^{*}(G) \) by Claim (1). Moreover, \(R \) is \(\sigma \)-eccentric in \(G \) by Claim (3), so every automorphism of \(R \) induced by an element of \(G \) is inner by hypothesis. Hence \(G = R C_{G}(R) \) by Lemma 2.2, where evidently \(C_{G}(R) \neq G \). Then, by Claim (2), \(C_{G}(R) \leq F_{\sigma}^{*}(G) \), so \(G = F_{\sigma}^{*}(G) \) is \(\sigma \)-quasinilpotent by Theorem A(i). This contradiction completes the proof of the result.

Proof of Theorem D. Let \(D \) be the intersection of the \(\sigma \)-centralizers of the chief factors of \(G \). First we show that \(F_{\sigma}(G) \leq D \), that is, for any chief factor \(H/K \) of \(G \) we have \(F_{\sigma}(G) \leq C_{G}^{\sigma}(H/K) \). If \(F_{\sigma}(G) \leq K \), it is evident. Now assume that \(H \leq F_{\sigma}(G) \). Then \(H/K \) is \(\sigma \)-primary, \(H/K \) is a \(\sigma \)-group say. Hence \(C_{G}^{\sigma}(H/K) = O_{\sigma_{1}}(G) C_{G}(H/K) \). By Theorem A(i), \(F_{\sigma}(G) \) is \(\sigma \)-nilpotent, so \(F_{\sigma}(G) = O_{\sigma_{1}}(F_{\sigma}(G)) \times O_{\sigma_{1}}(F_{\sigma}(G)) \) by Lemma 2.3. Moreover, \(O_{\sigma_{1}}(F_{\sigma}(G)) = O_{\sigma_{1}}(G) \leq C_{G}(H/K) \). On the other hand, Lemma 2.4 implies that \(O_{\sigma_{1}}(F_{\sigma}(G)) \leq C_{F_{\sigma}(G)}/H/K \). Hence \(F_{\sigma}(G) \leq C_{G}^{\sigma}(H/K) \). Therefore for any chief factor \(H/K \) of \(G \) we have \(F_{\sigma}(G) \leq C_{G}^{\sigma}(H/K) \) by the Jordan-Hölder theorem and Lemma 2.6.

Now we show that \(D \) is \(\sigma \)-nilpotent. Let \(H/K \) be a chief factor of \(G \) such that \(H \leq D \). Let \(C = C_{G}^{\sigma_{i}}(H/K) \). Then \(H \leq D \leq C \), so \(H/K \) is a \(\sigma \)-group for some \(i \). Hence \(C = O_{\sigma_{i}}(G) C_{G}(H/K) \). Therefore \(C / C_{G}(H/K) \simeq O_{\sigma_{i}}(G) / (O_{\sigma_{i}}(G) \cap C_{G}(H/K)) \) is a \(\sigma \)-group, so \(H/K \) is \(\sigma \)-hypercentral in \(C/K \) by Lemma 2.4. Thus \(H/K \) is \(\sigma \)-hypercentral in \(D/K \) by Lemma 2.7(iii). Therefore all factors of some chief series of \(D \) are \(\sigma \)-central in \(D \) and so \(D \) is \(\sigma \)-nilpotent by the Jordan-Hölder theorem, which implies that \(D \leq F_{\sigma}(G) \). Hence \(D = F_{\sigma}(G) \).

Now let \(D^{*} \) be the intersection of the \(\sigma \)-innerisers of the chief factors of \(G \). First we show that \(D^{*} \leq F_{\sigma}^{*}(G) \). Let \(H/K \) be a chief factor of \(G \) such that \(H \leq D^{*} \), and let \(C = C_{G}^{\sigma_{i}}(H/K) \). Then \(H \leq D^{*} \leq C \). If \(H/K \) is not \(\sigma \)-primary, then \(C = H C_{G}^{\sigma_{i}}(H/K) = H C_{G}(H/K) \) and so every element of \(C \) induces an inner automorphism on \(H/K \). Hence every element of \(D^{*} \) induces an inner automorphism on \(T/L \) for every chief factor \(T/L \) of \(D^{*} \) such that \(K \leq L < T \leq H \) by Lemma 2.1(i). Now suppose that \(H/K \) is a \(\sigma \)-group for some \(i \). Then \(C = O_{\sigma_{i}}(G) C_{G}(H/K) \), so every chief factor \(T/L \) of \(C \) such that \(K \leq L < T \leq H \) is \(\sigma \)-central in \(C \) by Lemma 2.4. Therefore \(D^{*} \) is \(\sigma \)-quasinilpotent. Hence \(D^{*} \leq F_{\sigma}^{*}(G) \).

Finally, we show that \(F_{\sigma}^{*}(G) \leq C_{G}^{\sigma_{i}}(H/K) \) for every chief factor \(H/K \) of \(G \). In view of the Jordan-Hölder theorem, it is only enough to consider the case when \(H \leq F_{\sigma}^{*}(G) \). If \(H/K \) is \(\sigma \)-primary for some \(i \), then \(F_{\sigma}^{*}(G) / C_{F_{\sigma}^{*}(G)}/H/K \) is \(\sigma \)-
primary by Theorem A(i) and Lemmas 2.4 and 2.8. Moreover, $C_{G}^\sigma(H/K) = O_{\sigma}(G)C_{G}(H/K)$. Hence $E_{\sigma}(G) \leq C_{F_{2}(G)}(H/K)$, and

$$O_{\sigma}(F_{\sigma}(G)) = O_{\sigma}(F_{\sigma}(F^{*}(G))) \leq C_{F_{2}(G)}(H/K).$$

Thus

$$F_{\sigma}^{*}(G) = E_{\sigma}(G)F_{\sigma}(G) \leq C_{G}^\sigma(H/K)$$

by Theorem B(ii). Now assume that H/K is not σ-primary. Then $C_{G}^\sigma(H/K) = HC_{G}(H/K)$. Lemma 2.8 implies that $F_{\sigma}^{*}(G)/F_{\sigma}(G)$ is a direct product of some simple non-abelian groups. Hence $F_{\sigma}^{*}(G)/F_{\sigma}(G) = \left((H_{1}/F_{\sigma}(G)) \times \cdots \times (H_{1}/F_{\sigma}(G))\right)$ for some minimal normal subgroups $H_{1}/F_{\sigma}(G), \ldots, H_{1}/F_{\sigma}(G)$ of $G/F_{\sigma}(G)$ by [15, Ch.A, 4.14]. In view of the Jordan-Hölder theorem and Lemma 2.6, we can assume without loss of generality that $H/K = H_{1}/F_{\sigma}(G)$, so $H_{2} \cdots H_{t} \leq C_{G}(H/K)$. But then $F_{\sigma}^{*}(G) = HC_{F_{2}(G)}(H/K) \leq C_{G}^\sigma(H/K)$. Hence $F_{\sigma}^{*}(G) \leq D^{*}$, so $F_{\sigma}^{*}(G) = D^{*}$.

The result is proved.

4. Further applications

First consider the following

Corollary 4.1. $C_{G}(F_{\sigma}^{*}(G)) \leq F_{\sigma}^{*}(G)$.

Proof. Let $F^{*} = F_{\sigma}^{*}(G)$ and $C = C_{G}(F^{*})$. Suppose that $C \not\leq F^{*}$ and let H/F^{*} be a chief factor of G, where $H \leq CF^{*}$. Then $H = F^{*}(H \cap C)$, where $H \cap C$ is a normal σ-quasinilpotent subgroup of G by Lemma 2.8 since $(H \cap C)/(H \cap C \cap F^{*}) \simeq H/F^{*}$ and $(H \cap C) \cap F^{*} \leq Z(H \cap C)$. Thus $H \leq F^{*}$ by Theorem A(i). This contradiction completes the proof of the corollary.

From corollary 4.1 and Theorem B we get

Corollary 4.2. If G is σ-soluble, then $C_{G}(F_{\sigma}(G)) \leq F_{\sigma}(G)$.

In the case when $\sigma = \sigma^{*}$ we get from Corollary 4.2 the following

Corollary 4.3 (See [16, Ch.6, Theorem 1.3]). If G is soluble, then $C_{G}(F(G)) \leq F(G)$.

In view of Remark 1.1, in the case when $\sigma = \sigma^{*}$, we get from Corollary 4.2 the following

Corollary 4.4. If G is π-separable, then $C_{G}(O_{\pi}(G) \times O_{\pi'}(G)) \leq O_{\pi}(G) \times O_{\pi'}(G)$.

Now note that if G is π-separable and $O_{\pi'}(G) = 1$, then $F_{\pi'}(G) = O_{\pi}(G)$ and so from Corollary 4.4 we get the following

Corollary 4.5 (See [16, Ch.6, Theorem 3.2]). If G is π-separable, then

$$C_{G/O_{\pi'}(G)}(O_{\pi}(G/O_{\pi'}(G))) \leq O_{\pi}(G/O_{\pi'}(G)).$$

In view of Remark 1.1, in the case when $\sigma = \sigma^{1\pi}$ and $O_{\pi'}(G) = 1$, we have $F_{\sigma}(G) = O_{p_{1}}(G) \times \cdots \times O_{p_{n}}(G) = F(G)$ and so we get from Corollary 4.4 the following
Corollary 4.6. If G is π-soluble, then:
\begin{equation}
\sigma(\calD_{O_p(G)}(G) \times \cdots \times O_p(G) \times O_{\pi}(G)) \leq \calD_{O_p(G)}(G) \times \cdots \times O_p(G) \times O_{\pi}(G)
= \calD(O_{\pi}(G)) \times O_{\pi}(G).
\end{equation}
\begin{enumerate}
\item If $O_{\pi}(G) = 1$, then $C_G(F(G)) \leq F(G)$.
\end{enumerate}

Corollary 4.7 (Monakhov and Shypko [17]). If G is π-soluble group, then:
\begin{enumerate}
\item $C_G(O_{\pi}(G) \times O_{\pi}(G)) \leq F(O_{\pi}(G)) \times O_{\pi}(G)$.
\item If $O_{\pi}(G) = 1$, then $C_G(F(G)) \leq F(G)$.
\end{enumerate}

Corollary 4.8. Let H be a σ-soluble subgroup of G. If $E_{\sigma}(G) \leq N_G(H)$, then $E_{\sigma}(G) \leq C_G(H)$. Hence $E_{\sigma}(G)$ centralizes each normal σ-soluble subgroup of G.

Proof. Since $E_{\sigma}(G) \leq N_G(H)$, $[E_{\sigma}(G), H] \leq E_{\sigma}(G) \cap H$ and $E_{\sigma}(G) \cap H$ is a σ-soluble normal subgroup of $E_{\sigma}(G)$. Hence $E_{\sigma}(G) \cap H \leq Z(E_{\sigma}(G))$ since $E_{\sigma}(G)/Z(E_{\sigma}(G))$ is σ-semisimple by Theorem B(ii). Hence $[E_{\sigma}(G), H, E_{\sigma}(G)] = 1$, so $[E_{\sigma}(G), H] = [E_{\sigma}(G), E_{\sigma}(G), H] = 1$ by the lemma on three subgroups [18, III, 1.10]. The corollary is proved.

ACKNOWLEDGMENT

The authors are very grateful to the helpful suggestions of the referee.

REFERENCES

Received submission date; revised revision date