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1. Introduction and preliminaries

The aim of this paper is to investigate relations between the cohomology groups of the
tangential Cauchy Riemann complexes of n-reductive compact homogeneous CR mani-

Dipartimento di Matematica e Fisica, III Università di Roma, Largo San Leonardo Murialdo, 1 00146 Roma,
Italy
E-mail: marinistefano86@gmail.com
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folds and the corresponding Dolbeault cohomology groups of their canonical embeddings.
The class of n-reductive compact homogeneous CR manifolds was introduced in [1]: its
objects are the minimal orbits, in homogeneous spaces of reductive complex groups, of
their compact forms.

Results on the cohomology of the tangential CR complexes on general compact CR
manifolds of arbitrary codimension were obtained in [14] (see also [8]), under suitable r-
pseudoconcavity conditions, involving their scalar Levi forms, that were first introduced
in [3, 25]. In this paper we will restrain to the homogeneous case.

The CR structure of a homogeneous CR manifold M0 is efficiently described by con-
sidering its CR algebra at any point p0 ∈ M0: it is the pair (κ0, v) consisting of the
real Lie algebra κ0 of its transitive group K0 of CR-automorphisms and of the subspace
v = dπ−1(T 0,1

p0 M0) of the complexification κ of κ0 (see [22]). The formal integrability of
the partial complex structure T 0,1M0 of M0 is equivalent to the fact that v is a complex Lie
subalgebra of κ . The intersection v∩ v̄ (conjugation is taken with respect to the real form
κ0) is the complexification of the Lie algebra of the stabilizer of p0 in K0 and the quotient
v/(v∩ v̄) represents the space T 0,1

p0 M0 of anti-holomorphic complex tangent vectors at p0.

We call n-reductive a homogeneous CR manifold for which v = (v ∩ v̄) ⊕ n(v), i.e.
for which T 0,1

p0 M0 can be identified to the nilradical of v. It was shown in [1] that the
intersection of any pair of Matsuki-dual orbits in a complex flag manifold M, with the
CR structure inherited from M, is an n-reductive compact homogeneous CR manifold.
Moreover, when M0 is n-reductive, v is the Lie algebra of a closed complex Lie subgroup
V of K that contains the stabilizer of p0 as its maximal compact subgroup, so that M0 =

K0/V0 ↪→ M− = K/V is a generic CR-embedding. Vice versa, if M− is a K-homogeneous
complex algebraic manifold, then a minimal K0-orbit M0 in M− is an n-reductive compact
homogeneous CR manifold.

Since K0 is a maximal compact subgroup of a linear algebraic complex group K, the
quasi-projective manifold M− can be viewed as a K0-equivariant fiber bundle on the basis
M0 (see [24]). We use this Mostow fibration of M− onto M0 to construct a nonnegative
smooth exhaustion φ of M−, with φ−1(0) = M0, to relate the Dolbeault cohomology of
M− to the cohomology of the tangential CR-complex on M0. This requires some preci-
sion on the structure of the fibers and forces us to introduce a further requirement on the
CR algebra (κ0, v), namely to ask that, if w is the largest complex subalgebra of κ with
v ⊂ w ⊂ (v + v̄), (see [22, Theorem 5.4]), then n(w) is the nilradical of a parabolic sub-
algebra of κ . This condition is satisfied in many examples coming from Matsuki duality
(cf. [21]) and can always be satisfied by strengthening the CR structure of an n-reductive
M0.

When we drop this extra assumption, we are still able to construct a continuous ex-
haustion, which, when M0 is r-pseudoconcave, is still strictly r-pseudoconcave, allowing
us to obtain results on the first (r − 1) tangential Cauchy Riemann and Dolbeault coho-
mology groups of M0 and M− (or up to (r − hd(F ) − 1) if we discuss cohomology with
coefficients in a coherent sheaf F ).

Earlier versions of some results proved here were discussed in [19, 20].

The paper is organized as follows.
In §2 we discuss some basic facts on n-reductive CR manifolds. We skip from ba-
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sic stuff on CR manifolds and CR algebras, for which we refer, e.g., to [14, 22], and
only explain those special features which are necessary for the developments of the next
sections.

Cartan and Mostow fibrations are related to the structure of negatively curved Rie-
mannian symmetric space of the set of Hermitian symmetric matrices with determinant
one. Hence we found convenient to discuss in §3, as a preliminary, some topics of the
geometry of SLn(C)/SU(n).

In §4 we study decompositions of K with Hermitian fibers.
Example 3.7 shows that a K0-equivariant fibration of M− with Hermitian fibers, as in

[23], is not always possible. In §5 we describe the general structure of the fibers. To this
aim, we consider a class of parabolic subalgebras associated to the pair (κ0, v) and find
a condition, that we call HNR from horocyclic nilradical, under which we get a Mostow
fibration of M− with Hermitian fibers.

In the final section §6 we apply these results to construct an exhaustion function which
permits to relate some cohomology groups of the tangential CR complexes on M0 to the
corresponding cohomology groups of the Dolbeault complexes on M− and analogous
results for Čech cohomology with coefficients in a coherent sheaf. We conclude with the
study of an example of a family of intersections of Matsuki-dual orbits and an application
of §4 to obtain a pseudoconcavity result for which we do not require the validity of the
HNR assumption.

2. Compact homogeneous CR manifolds and n-reductiveness

In this section we introduce the class of homogeneous CR manifold which is the object
of this investigation. We found convenient to recall, in an initial short subsection, the
definition of reductive Lie group, as it is not completely standard in the literature.

2.1 – Reductive Lie groups

We call reductive a Lie algebra κ whose radical is abelian: its commutator subalgebra
[κ, κ] is its semisimple ideal and its radical a equals its center (see [7]).

Reductive κ’s are characterized by having faithful semisimple representations.
An involution θ on a Lie algebra κ yields a direct sum decomposition

κ = κ0 ⊕p0, with κ0 = {X ∈ κ | θ(X) = X}, p0 = {X ∈ κ | θ(X) = −X}.

A Lie group K is reductive (see [17]) if its Lie algebra κ is reductive and, moreover,
there are an involution θ and an invariant bilinear form b on κ such that

(i) κ0 ⊥ p0 for b;
(ii) b < 0 on κ0 and b > 0 on p0;

(iii) κ0 is the Lie algebra of a compact subgroup K0 of K and

(2.1) K0 × p0 3 (x, X) −→ x · exp(X) ∈ K

is a diffeomorphism onto;
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(iv) every automorphism Ad(x) of the complexification κC of κ, with x ∈ K, is inner,
i.e. belongs to the analytic subgroup of the automorphis group of κC having Lie
algebra ad(κ).

Then: θ is a Cartan involution, κ = κ0 ⊕p0 and (2.1) are Cartan decompositions, K0 is
the associated maximal compact subgroup, b is the invariant bilinear form. The maximal
compact subgroup K0 of K intersects all connected component of K (see [17, Proposition
7.19]). In particular, K has finitely many connected components.

2.2 – Splittable Lie subalgebras

Let κ be a reductive complex Lie algebra, and

κ = z ⊕ s, with z = {X ∈ κ | [X, κ] = {0}}, s = [κ, κ]

its decomposition into the direct sum of its center and its semisimple ideal. An element
X of κ is semisimple if ad(X) is a semisimple derivation of κ, and nilpotent if X ∈ s and
ad(X) is nilpotent.

An equivalent formulation is obtained by considering a faithful matrix representation
of κ in which the elements of z are diagonal: then semisimple and nilpotent elements
correspond to semisimple and nilpotent matrices, respectively.

Each X ∈ κ admits a unique Jordan-Chevalley decomposition

X = Xs + Xn, with Xs semisimple, Xn nilpotent, and [Xs, Xn] = 0.

A Lie subalgebra v of κ is splittable if, for each X ∈ v, both Xs and Xn belong to v.
If v is a Lie subalgebra of κ, the set

nκ(v) = {X ∈ rad(v) | X is nilpotent}

is a nilpotent ideal of v, with

radn(v) = rad(v) ∩ [v, v] ⊂ nκ(v) ⊂ nil(v),

where nil(v) is the nilradical, i.e. the maximal nilpotent ideal of v, and radn(v) its nilpotent
radical, i.e. the intersection of the kernels of all irreducible finite dimensional linear
representations of v. Note that the nilpotent ideal nκ(v), unlike nil(v) and radn(v), depends
on the inclusion v ⊂ κ (cf. [6, §5.3]). We recall

Proposition 2.1 (see [6, §5.4]). Every splittable Lie subalgebra v admits a Levi-
Chevalley decomposition

(2.2) v = nκ(v) ⊕ vr,

with vr reductive and uniquely determined modulo conjugation by elementary automor-
phisms of v, i.e. finite products of automorphisms of the form exp(ad(X)), with X ∈ v and
nilpotent. �
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2.3 – Definition of n-reductive

Let κ be the complexification of a compact Lie algebra κ0. Conjugation in κ will be
understood with respect to its compact real form κ0. Note that all Lie subalgebras of a
compact Lie algebra are compact and hence reductive.

Proposition 2.2. For any complex Lie subalgebra v of κ, the intersection v ∩ v̄ is
reductive and splittable. In particular, v ∩ v̄ ∩ nκ(v) = {0}. A splittable v admits a Levi-
Chevalley decomposition with a reductive Levi factor containing v ∩ v̄.

Proof. We recall that v is splittable if and only if its radical is splittable ([6, Ch.VII, §5,
Théorème 2]). In this case, v admits a Levi-Chevalley decomposition and all maximal
reductive Lie subalgebras of v can be taken as reductive Levi factors. The intersection
v∩ v̄ is reductive, being the complexification of the compact Lie algebra v∩ κ0. Then the
reductive Levi factor in the Levi-Chevalley decomposition of v can be taken to contain
v ∩ v̄ (see e.g. [26]). �

Notation 2.1. In the following, for a complex Lie subalgebra v of κ, we shall use the
notation

L0(v) = v ∩ κ0, L(v) = v ∩ v̄.

Definition 2.1. Let K0 be a compact Lie group with Lie algebra κ0 and M0 a K0-
homogeneous CR manifold, with isotropy V0 and CR algebra (κ0, v) at a point p0 ∈ M0.
We say that M0, and its CR algebra (κ0, v), are n-reductive if

v = nκ(v) ⊕ L(v),

i.e. if L(v) = v ∩ v̄ is a reductive complement of nκ(v) in v.

Remark 2.3. If (κ0, v) is n-reductive, then v is splittable. Indeed all elements of nκ(v)
are nilpotent and all elements of L(v) are splittable, because L(v) is the complexification
of L0(v), which is splittable because consists of semisimple elements. Then v is splittable
by [6, Ch,VII, §5, Théorème 1].

All submanifolds which are intersections of dual submanifold in the Matsuki dual-
ity, with the CR structure inherited by the embedding in the ambient flag manifold, are
n-reductive (see [1, §1]). We exhibit here an example of a compact homogeneous CR
manifold M0 which is not n-reductive.

Example 2.4. Let K0 = SU(n), n ≥ 3. Fix a complex symmetric nondegenerate n × n
matrix S and consider the subgroup V = {a ∈ SL(n,C) | atS a = S } of SL(n,C), with Lie
algebra v = {X ∈ sl(n,C) | XtS + S X = 0}. Set V0 = V ∩ K0 and M0 = K0/V0. This is
a K0-homogeneous CR manifold with CR algebra (κ0, v), where κ0 ' su(n), v ' so(n,C).
If S and S ∗ are linearly independent, then v is a semisimple Lie subalgebra of κ distinct
from v ∩ v̄.
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The CR manifolds of Definition 2.1 have canonical complex realizations:

Theorem 2.5 ([1, Theorem 4.3]). Let M0 be an n-reductive K0-homogeneous CR man-
ifold, with CR algebra (κ0, v) and isotropy V0 at some point p0 ∈ M0. Then there is a
closed complex Lie subgroup V of the complexification K of K0 with K0 ∩ V = V0 and
Lie(V) = v such that the canonical map

(2.3) M0 ' K0/V0 −→ M− = K/V

is a generic CR embedding. �

Remark 2.6. Vice versa, if M− = K/V is the homogeneous complex manifold of the
complexification K of K0, it is shown in [1, Prop.2.9] that any K0-orbit M0 of minimal
dimension in M−, with the CR structure induced by the ambient space, is n-reductive.

3. Some remarks on SLn(C)/SU(n)

Keep the notation of §2. As we explained in the introduction, we need to precise the
structure of the fibers of the K0-equivariant Mostow fibration M− → M0.

Mostow fibration ([23, 24]) extends to homogeneous spaces the Cartan decomposition
of reductive Lie groups. Both are related to the fact that the positive definite n× n Hermi-
tian symmetric matrices with determinant one are the points of a Riemannian symmetric
space Mn with negative sectional curvature. We will discuss some topics on the geometry
of Mn (see e.g. [11]).

Any compact Lie group K0 has, for some integer n > 1, a faithful linear representation
in SU(n), which extends to a linear representation K ↪→ SLn(C). Thus decompositions in
SLn(C) are preliminary to the general case.

The linear group SLn(C) has the Cartan decomposition

SU(n) × p0(n) 3 (x, X) −→ x · exp(X) ∈ SLn(C),

where SU(n) = {x ∈ SLn(C) | x∗x = In} is its maximal compact subgroup consisting
of n × n unitary matrices with determinant one, and p0(n) the subspace of the traceless
Hermitian symmetric n × n matrices in sln(C).

The quotient Mn = SLn(C)/SU(n) is a symmetric space of the noncompact type and
rank (n−1), endowed with a Riemannian Riemanniansymmetricmetric with negative cur-
vature. We can identify Mn with the set P0(n) of positive definite Hermitian symmetric
matrices in SLn(C), which in turn is diffeomorphic to p0(n) via the exponential map. In
this way Mn can be considered as an open subset of p0(n) and its tangent bundle T Mn is
naturally diffeomorphic to the subbundle

T Mn = {(p, X) ∈ Mn × p(n) | p−1X ∈ p0(n)}

of the trivial bundle Mn × p(n), where we set p(n) = {X ∈ Cn×n | X∗ = X}.
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The special linear group SLn(C) acts on Mn as a group of isometries, by

SLn(C) ×Mn 3 (z, p) −→ zpz∗ ∈ Mn,

and SU(n) is the stabilizer of the identity e = In, that we choose as the base point.
The metric tensor on Mn is

(X,Y)p = gp(X,Y) = trace(p−1Xp−1Y), ∀p ∈ Mn, ∀X,Y ∈ TpMn.

The curves

R 3 t → z exp(tX)z∗ ∈ Mn, for X ∈ p0(n), z ∈ SLn(C)

are the complete geodesics in Mn issued from p = zz∗ and

dist(p1, p2)=
(∑n

i=1
| log(λi(p−1

1 p2)|2
)1/2

,

where λi(p−1
1 p2) are the eigenvalues of the matrix p−1 p2, which are real and positive, the

Riemanniandistance on Mn.

3.1 – Killing and Jacobi vector fields

Since Mn is a Riemannian symmetric space of SLn(C), the Lie algebra of its Killing
vector fields is isomorphic to sln(C). The correspondence is

sln(C) 3 Z −→ ζZ = {p→ Zp + pZ∗} ∈ X(Mn).

For H in p0(n), the restriction to [0, 1] of the geodesic t → γH(t) = exp(tH) is the
shortest path from e = γH(0) to h = exp(H) = γH(1). We will denote by J (H) the space
of Jacobi vector fields on γH and by J0(H) its subspace consisting of those vanishing at
t = 0. For each Z ∈ sln(C), the restriction of ζZ∗ to γH is a Jacobi vector field, that we
denote by θZ :

{R 3 t −→ θZ(t) = Z∗ exp(tH) + exp(tH)Z} ∈ J (H).

To describe J (H) it is convenient to consider the commutator of H : C(H) = {Z ∈ sln(C) | [Z,H] = 0} = Cu(H) ⊕ C0(H), with
Cu(H) = C(H) ∩ su(n), C0(H) = C(H) ∩ p0(n).

Proposition 3.1. The correspondence θ : sln(C) 3 Z → θZ ∈ J (H) is a linear map
with kernel Cu(H). For each T ∈ C0(H), J(t) = t · θT (t) is a Jacobi vector field and

J (H) = {θZ + t·θT | Z ∈ sln(C), T ∈ C0(H)},(3.1)
J0(H) = {θY + t·θT | Y ∈ su(n), T ∈ C0(H)}.(3.2)

Fix Z ∈ sln(C) and T ∈ C0(H). Then

(3.3) J(t) = θZ(t) + t·θT (t) = Z∗ exp(tH) + exp(tH)Z + 2t · T · exp(tH)
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is the Jacobi vector field on γH satisfying the initial conditions:

(3.4)

J(0) = Z + Z∗,

J̇(0) = 1
2 [H,Z − Z∗] + 2T,

and we have

(3.5)


J̇(t) = 1

2θ[H,Z]+2T (t),

Dk J(t)
dtk = 2−kθadk

H (Z)(t), for k ≥ 2.

Proof. If T ∈ C0(H), then θT is parallel and therefore also t ·θT is Jacobi on γH . To
compute the covariant derivatives of the Jacobi vector field J(t) defined in (3.3), we use
the parallel transport TγH (t)Mn 3 X → exp(sH/2)X exp(sH/2) ∈ TγH (t+s)Mn along γH .
Then

θ̇Z(t) =

(
d
ds

)
s=0

[
exp(−sH/2)

{
Z∗ exp([t + s]H) + exp([t + s]H)Z

}
exp(−sH/2)

]
= 1

2 [Z∗,H] exp(tH) + 1
2 exp(tH) [H,Z] = 1

2θ[H,Z](t).

By iteration we obtain (3.5) and, in particular, (3.4).
Finally, we need to show that all J in J (H) have the form (3.3). Since adH is semisim-

ple, sln(C) decomposes into the direct sum of its image and its kernel. Hence p0(n) =

[H, su(n)] ⊕ C0(H), and this yields (3.1) and (3.2). �

For X ∈ p0(n), we will denote by JX the geodesic on γH with

(3.6)

JX(0) = 0,
J̇X(0) = X,

while θX ∈ J (H) satisfies θX(0) = 2X, θ̇X(0) = 0.
The nonconstant geodesics of a manifold with negative curvature have no conjugate

points. Hence the map J0(H) 3 J → J(t) ∈ TγH (t)Mn is a linear isomorphism for all t , 0.
Moreover, for every J ∈ J (H), the real map1 t → ‖J(t)‖ is nonnegative and convex and
therefore a nonzero J(t) ∈ J (H) vanishes for at most one value of t ∈ R, corresponding to
a minimum of ‖J(t)‖2 and thus to a solution of (J(t)|J̇(t)) = 0.

Lemma 3.2. If J ∈ J (H) is not parallel along γH and (J(0)|J̇(0)) = 0, then

‖J(0)‖ < ‖J(t)‖ for all t , 0. �

Lemma 3.3. The quadratic form

(3.7) ‖J‖2H =

∫ 1

0
(1−t)

(
‖J̇(t)‖2 + (J(t), J̈(t))

)
dt

1 Here and in the following we drop the subscript indicating where norms and scalar products are computed,
when we feel that this simplified notation does not lead to ambiguity.
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is positive semidefinite on J (H) and

‖J‖2H = 0⇔ J = θT for a T ∈ C0(H).

Proof. Let J ∈ J (H). Then (J̈, J) = −(R(J, γ̇H)γ̇H |J) ≥ 0 for all t by the Jacobi equation,
because Mn has negative sectional curvature. Hence ‖J‖2H = 0 if and only if J̇(t) = 0 for
all t. The statement follows because {θT | T ∈ C0(H)} is the space of the Jacobi vector
fields that are parallel along γH . �

Lemma 3.4. We have

‖J(1)‖2 = ‖J(0)‖2+2(J(0)|J̇(0))+ 2 ‖J‖2H , ∀J ∈ J (H).(3.8)

Proof. We apply the integral form of the reminder in the first order Taylor’s expansion to
f (t) = ‖J(t)‖2. �

For further reference, we state an easy consequence of Lemma 3.4.

Lemma 3.5. Let Z ∈ sln(C), X ∈ p0(n), and trace(X · Z) = 0. Then

(3.9) ‖θZ(1) − JX(1)‖2 = ‖Z + Z∗‖2 + 2(H|[Z,Z∗]) + ‖θZ − JX‖
2
H .

Proof. We apply (3.8) to J = θZ − JX .
Then

J(0) = Z + Z∗, J̇(0) = 1
2 [H,Z − Z∗] − X.

yields

‖θZ(1) − JX(1)‖2 = ‖J(1)‖2 = ‖Z + Z∗‖2 + 2(Z + Z∗|X + 1
2 [H,Z − Z∗]) + (J|J)H

= ‖Z + Z∗‖2 + ([H,Z − Z∗]|Z + Z∗) + (J|J)H

= ‖Z + Z∗‖2 + 2(H|[Z,Z∗]) + (J|J)H .

�

Let J(t) = θZ(t) + tθT (t), with Z ∈ sln(C) and T ∈ C0(H). The two commuting Hermi-
tian symmetric matrices H and T can be simultaneously diagonalized in an orthonormal
basis of Cn . Let λ1, . . . , λm be the distinct eigenvalues of H, with multiplicities n1, . . . , nm

and choose an orthonormal basis of Cn to get matrix representations

(3.10)



H =


λ1In1

λ2In2

. . .

λmInm

, T =


τ1

τ2
. . .

τm

,

Z =


z1,1 z1,2 . . . z1,m
z2,1 z2,2 . . . z2,m
...

...
. . .

...
zm,1 zm,2 . . . zm,m

 ,
with τi ∈ R

ni×ni diagonal,
and zi, j ∈ C

ni×n j .
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Let us extend the trace norm of p0(n) to a norm in sln(C), by setting

|‖A‖| =
√

trace(AA∗) ≥ 0, ∀A ∈ sln(C).

Then

‖J(t)‖2 = trace
(
Z2 + Z∗2+2etHZe−tHZ∗+4t(Z + Z∗)T +4t2T 2

)
= trace

(
2 Re

∑m

i, j=1
zi, jz j,i+2

∑m

i, j=1
zi, jz∗i, je

t(λi−λ j)+8t Re
∑m

i=1
τizi.i+4t2

∑m

i=1
τ

2
i

)
=

∑
i, j

∣∣∣∥∥∥ zi, jet(λi−λ j)/2 + z∗j,ie
t(λ j−λi)/2

∥∥∥∣∣∣2 +
∑m

i=1
|‖ 2tτi + zi,i + z̄i,i |‖

2.

Set Z(t) = exp(tH/2)Z exp(−tH/2) = (zi, j(t)), with zi, j(t)=zi, jet(λi−λ j)/2 ∈ Cni×n j . We
obtain the expression

(3.11) ‖J(t)‖2 =
∑

i, j
|‖zi, j(t)+z∗j,i(t)|‖

2+
∑m

i=1
|‖2tτi + zi,i+z∗i,i|‖

2.

If J(t) = 0, then each summand in (3.11) equals zero. For the terms in the first sum this
amounts to the fact that [H,Z(t)] = ((λi − λ j)zi, j(t))1≤i, j≤m is Hermitian symmetric. Since
[H,Z(t)] and [H,Z] are similar, we obtain:

Lemma 3.6. Let Z ∈ sln(C) and H ∈ p0(n). A necessary condition in order that there
exists T ∈ C0(H) such that the Jacobi vector field J(t) = θZ(t) + tθT (t) on γH vanishes at
some t ∈ R is that [H,Z] is semisimple with real eigenvalues. �

Example 3.7. We consider the matrices

H =

λ1 0 0
0 λ2 0
0 0 λ3

 ∈ sl3(R), Z =

0 a 0
b 0 c
0 d 0

 , Y =

 0 α 0
−ᾱ 0 β

0 −β̄ 0

 .
We impose the conditions that Z be nilpotent and orthogonal to X = [H,Y] and that
θZ+Y (1) = 0. This translates into the set of equations

ab + cd = 0,
(λ2 − λ1)(aᾱ + bα) + (λ3 − λ2)(cβ̄ + dβ) = 0,
α = (aeλ1 + b̄eλ2 )/(eλ2 − eλ1 ),
β = (ceλ2 + d̄eλ3 )/(eλ3 − eλ2 ).

By using the last two equation we reduce to the system

ab + cd = 0,

λ2 − λ1

eλ2 − eλ1

(
|a|2eλ1 + ab(eλ1 + eλ2 ) + |b|2eλ2

)
+
λ3 − λ2

eλ3 − eλ2

(
|c|2eλ2 + cd(eλ2 + eλ3 ) + |d|2eλ3

)
= 0
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Assuming ab , 0 we obtain from the first equation d = −ab/c and, as λ3 = −λ1−λ2, the
system reduces to

(∗)


λ2 − λ1

eλ2 − eλ1

(
|a|2eλ1 + ab(eλ1 + eλ2 ) + |b|2eλ2

)
+

λ1 + 2λ2

eλ2 − e−λ1−λ2

(
|c|2eλ2 − ab(eλ2 + e−λ1−λ2 ) +

|ab|2

c2 e−λ1−λ2

)
= 0

Let us restrict to the case where a, b, c are real. For any fixed a, b, c with ab , 0, the left
hand side of (∗) is positive when ab > 0 and |λ1 + 2λ2| is sufficiently small. Let us keep
now λ1 fixed and consider the left hand side of (∗) as a real valued function f (λ2) of the
parameter λ2. Then

lim
λ2→+∞

λ
−1
2 f (λ2) = |b|2 + |c|2 − ab.

If ab > 0, this is negative for |a| � 1. Then we can choose the parameters to satisfy (∗).
In conclusion: we can find H,Z,Y with H ∈ p0(3), Z ∈ sl3(C) nilpotent, and Y ∈ su(3)
with X = [H,Y] ∈ p0(3) trace-orthogonal to Z such that θZ+Y (0) , 0 and θZ+Y (1) = 0.

Jacobi vector fields are used to compute the differential of the exponential map. In
fact, for H, X ∈ p0(n), the covariant derivative D

dt exp(H + tX)|t=0 is the value at t = 1 of
the Jacobian vector field JX ∈ J0(H). If X = [H,Y] + T, with Y ∈ su(n) and T ∈ C0(H),
then

(3.12)
D
dt

exp(H + tX)|t=0 = JX(1) = [exp(H),Y] + T exp(H).

4. Decompositions with Hermitian fibers

4.1 – Decomposition of SLn(C)

Throughout this section, V is a closed complex Lie subgroup of SLn(C), that admits a
Levi-Chevalley decomposition V = Vr · Vn, with Vr algebraic reductive and Vn unipotent
(cf. [31, Ch.I, §6.5]). We choose the embedding V ↪→ SLn(C) in such a way that V0 =

V ∩ SU(n) is a maximal compact sugbroup of V and a real form of Vr and set:

v = Lie(V), vr = Lie(Vr), vn = Lie(Vn), v0 = (v ∩ su(n)) = Lie(V0),(4.1)
m0 = (v + v∗)⊥ ∩ p0(n), v = v0 ⊕ v

′, with v
′ = (v ∩ p0(n)) ⊕ vn.(4.2)

Remark 4.1. We have (v + v∗) ∩ p0(n) = {Z + Z∗ | Z ∈ v}. Indeed, if Z1,Z2 ∈ v and
Z1 + Z∗2 ∈ p0(n), then Z = (Z1 + Z2)/2 ∈ v and Z1 + Z∗2 = Z + Z∗. Hence the maps

(4.3)

v′ 3 Z → (Z + Z∗) ∈ (v + v∗) ∩ p0(n),
v′ ⊕ m0 3 (Z, X)←→ (Z∗ + X + Z) ∈ p0

are R-linear isomorphisms. Often we will write Z ∈ v as a sum Z = Z0 + Zn, where it will
be understood that Z0 ∈ (v ∩ p0(n)) and Zn ∈ vn.
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By (4.3), the Euclidean subspace exp(m0) is a natural candidate for the typical fiber
F0 of an SU(n)-covariant fibration of SLn(C)/V. As we will see, this is in fact the case for
some important classes of V’s.

Being algebraic, V admits the decomposition

(4.4) V0 × v
′ 3 (u,Z0 + Zn)←→ u · exp(Z0) · exp(Zn) ∈ V,

which is a consequence of the Levi-Chevalley decomposition of V and of the polar Cartan
decomposition of Vr. Set

(4.5) N = {p ∈ Mn | p = v∗v, for some v ∈ V}.

Lemma 4.2. The map v→ v∗v defines, by passing to the quotients, an isomorphism

(4.6) V/V0 3 [v]
∼
−−−→ v∗v ∈ N.

Proof. In fact the right action v ·ζ = v∗ ·ζ ·v of V on N is transitive and V0 is the stabilizer
of e = In. �

Lemma 4.3. The map

(4.7) v
′ 3 (Z0 + Zn) −→ exp(Z∗n) · exp(Z0) · exp(Zn) ∈ N

is a diffeomorphism. In particular, N is diffeomorphic to a Euclidean space.

Proof. In fact, (4.7) is smooth and bijective and its inverse can be computed by using the
diffeomorphisms V/V0 ' v

′ of (4.4), and (4.6). �

Lemma 4.4. We can find a real r > 0 such that the map

(4.8) λ : v′ × m0 3 (Z0 + Zn,H) −→ exp(Z∗n) exp(Z0) exp(H) exp(Z0) exp(Zn) ∈ Mn

is a diffeomorphism of {‖H‖ < r} onto {p ∈ Mn | dist(p,N) < r}.

Proof. By (4.3), λ is a local diffeomorphism at all points where it has an injective differ-
ential. By using the isometries p→ z∗·p·z of Mn, we may reduce to points (0,H), where, to
compute the differential, we can use the Jacobi vector fields θZ and JX on γH , that where
defined in §3.1. Indeed, for (Z, X) ∈ v′ × m0, dλ(0,H)(Z, 0) = θZ(1) and dλ(0,H)(0, X) =

JX(1). Moreover, the maps v′ 3 Z → θZ(1) ∈ Texp(H)Mn and m0 3 X → JX(1) ∈ Texp(H)Mn

both are injective. Thus it suffices to verify that θZ(1) , JX(1) when Z and X are not zero.
By Lemma 3.5,

‖JX(1) − θZ(1)‖2 ≥ ‖Z + Z∗‖2 + 2(H|[Z,Z∗]), ∀(Z, X) ∈ v × m0.

For Z ∈ v′, we have ‖Z‖ = ‖Z∗‖ ≤ ‖Z + Z∗‖. Thus

|(H|[Z,Z∗])| ≤ ‖H‖ · ‖Z + Z∗‖2.

This implies that, for some r > 0, (4.8) defines a local diffeomorphism, and hence a
smooth covering, of v′ × {‖H‖ < r} onto {p ∈ Mn | dist(p,N) < r}. This is in fact a global
diffeomorphism because both spaces are simply connected. �
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Set

V′ = {exp(Z0) exp(Zn) | Z0 + Zn ∈ v
′}(4.9)

and consider the map

µ : SU(n) × m0 × V′ 3 (u, X, v) −→ u · exp(X) · v ∈ SLn(C).(4.10)

Proposition 4.5. The map (4.10) is onto.
There is a real r > 0 for which µ is a diffeomorphism of {‖X‖ < r} onto the open

manifold {ζ ∈ SLn(C) | dist(ζ∗ζ,N) < 2r}.

Proof. The set N = {z∗z | z ∈ V} is a properly embedded smooth submanifold of Mn.
Hence, for each p ∈ Mn, there is a zp ∈ V with

dist(p, z∗pzp) = dist(p,N).

The geodesic joining z∗pzp to p has the form [0, 1] 3 t → γ(t) = z∗p exp(tH)zp for some
H ∈ p0(n), and γ̇(0) is orthogonal to N at z∗pzp. The isometry q → z∗p

−1q z−1
p maps N into

itself, z∗pzp to e and γ̇(0) to H. Thus H ∈ TeMn = p0(n) belongs to m0.
This shows that, if ζ ∈ SLn(C) and z∗pzp is the nearest point in N to p = ζ∗ζ, then

p = ζ
∗
ζ = z∗p exp(H)zp, for some zp ∈ V′ and H ∈ m0.

The matrix u = ζ · z−1
p · exp(−H/2) belongs to SU(n). Indeed

u∗u = exp(−H/2) · [z−1
p ]∗ · ζ∗ · ζ · z−1

p · exp(−H/2)

= exp(−H/2) · [z−1
p ]∗ · z∗p · exp(H) · zp · z−1

p · exp(−H/2) = In.

Since ζ = u · exp(H/2) · zp, this proves that (4.10) is onto.
The second part of the statement is then a consequence of Lemma 4.4. �

Corollary 4.6. The map

(4.11) SU(n) × m0 3 (x, X) −→ π(x · exp(X)) ∈ SLn(C)/V,

where π : SLn(C)→ SLn(C)/V is the projection onto the quotient, is onto. By passing to
the quotient, it defines a surjective smooth map

(4.12) SU(n) ×V0 m0 −→ SLn(C)/V,

where SU(n) ×V0 m0 is the quotient of SU(n) × m0 modulo the equivalence relation

(x, X) ∼ (x · u, u∗Xu) for x ∈ SU(n), X ∈ m0 and u ∈ V0. �
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4.2 – Decomposition of K

Let V be a closed subgoup of the complexification K of a compact Lie group K0. We
can assume that in turn K is a linear subgroup of SLn(C), with K0 = K ∩ SU(n), and
V0 = V ∩ SU(n) a maximal compact subgroup of V. We obtain:

Proposition 4.7. With f0 = m0 ∩ κ, we have the commutative diagram with surjective
arrows

(4.13) K0 × f0
//

$$

K0 ×V0 f0

yy
K/V,

where the horizontal arrow is the projection onto the quotient, the left one is obtained by
restricting (4.11), and the right one by passing to the quotient.

We denoted by K0×V0f0 the quotient of the product K0× f0 by the equivalence relation
(x, X) ∼ (x · u,Ad(u−1)(X)) for x ∈ K0, X ∈ f0 and u ∈ V0. The right arrow maps the
equivalence class of (x, X) to π(x · exp(X)) ∈ K/V ⊂ SLn(C)/V.

Proof. It is sufficient to follow the proof of Proposition 4.5 and check that, for ζ ∈ K, we
obtain X ∈ f0 and x ∈ K0.

In fact, in this case, ζ∗ζ = z∗ exp(2X)z ∈ K∩P0(n), with z ∈ V, implies that exp(2X) =

z∗−1ζ∗ ζ z−1 ∈ exp(m0) ∩K = exp(f0). �

We have the analogous of Proposition 4.5.

Proposition 4.8. The map

(4.14) K0 × f0 ×V′ 3 (u, X, v) −→ u · exp(X) · v ∈ K

is always surjective and there is r0 > 0 such that, for all 0 < r ≤ r0, it is a diffeomorphism
of {‖X‖ < r} onto a tubular neighborhood of M0 = K0/V0 in M−. �

It is known that the right arrow in (4.13) is the Mostow fibration of K/V when V is
reductive (see e.g. [23, 29]). We give here a simple proof relying on the preparation done
in §3.

Proposition 4.9. If V is reductive, then the natural surjective map

(4.15) K0 ×V0 f0 → M− = K/V

is a diffeomorphism.
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Proof. In this case V, being algebraic and self-adjoint, has the Cartan decomposition
V = V0 × exp(v′), with v′ = v ∩ p0(n). By Lemma 3.2, the map

λκ : v′ × f0 3 (Z,H) −→ exp(Z∗) · exp(H) · exp(Z) ∈ K ∩ P0(n)

is surjective. Moreover, it is a local diffeomorphism at every point of v′ × f0. In fact, we
can reduce to prove this fact at points (0,H), where the differential at (Z, X) is J(1) for
J(t) = θZ + JX ∈ J (H). Then ‖J(1)‖ ≥ ‖J(0)‖ = 2‖Z‖ > 0 for Z , 0, while JX(1) , 0 if
X , 0. Since κ∩p0(n) = v′ ⊕ f0, this proves that dλκ(0,H) is a linear isomorphism. Thus,
being a connected covering of a simply connected space, λκ is a global diffeomorphism.

Hence, for every ζ ∈ K, there is a unique pair (Z,H) ∈ v′ × f0 such that

ζ
∗ · ζ = exp(Z∗) · exp(H) · exp(Z);

then u = ζ · exp(−Z) · exp(− 1
2 H) ∈ K0 and we obtain the direct product decomposition

(4.16) K = K0 · exp(f0) · exp(v′),

from which the statement follows. �

The complex K-homogeneous M− of Proposition 4.9 corresponds to an M− which is
the Stein complexification of a totally real K0-homogeneous compact M0. An M0 having
a positive CR dimension corresponds to a V having a nontrivial unipotent radical.

Before investigating cases where, even though vn , 0, (4.15) is nevertheless a diffeo-
morphism, we observe that, when we know that decomposition (4.10) is unique, we can
extract some extra information from the minimal distance characterization of z∗pzp in the
proof of Proposition 4.5. For instance, as a corollary of Proposition 4.5, we obtain the
following

Proposition 4.10. For h ∈ P0(n), denote by D`(h) the minor determinant of the first `
rows and columns of h. Set D0(h) = 1 and let 0 < λ1(h) ≤ · · · ≤ λn(h) be the eigenvalues
of h. Then

(4.17) dist(h, e) =
∑n

`=1
| log(λ`(h))|2 ≥

∑n

`=1
| log(D`(h)/D`−1(h))|2.

If h is not diagonal, we have strict inequality.

Proof. We take V equal to the group of unipotent upper triangular matrices in GLn(C).
The element δ = e∆ ∈ Nh = {z∗hz | z ∈ V}, with ∆ ∈ p0, at minimal distance from e
satisfies trace([Z + Z∗]∆) = 0 for all nilpotent upper triangular Z and hence is diagonal.
The unique diagonal δ = z∗hz in Nh is the one obtained by the Gram-Schmidt orthogonal-
ization procedure. The proof is complete. �

The orbit of a point p ∈ Mn by the group of unipotent upper triangular matrices of
SLn(C) is an example of a horocycle of maximal dimension in a symmetric space of
noncompact type. We will generalize this situation while outlining a class of subroups V
for which F0 = exp(f0) can be taken as the fiber of the K0-covariant fibration.

Following [32, p.17], we call horocyclic in κ the nilpotent subalgebras which are
nilradicals of parabolic subalgebras of κ .
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Lemma 4.11. Let q be a parabolic subalgebra of sln(C), with nilradical qn. Assume
that q ∩ q∗ is a reductive Levi factor of q. Let H ∈ q ∩ p0(n). Then, for Z0 ∈ q ∩ q

∗,
T ∈ C0(H) ∩ q and Zn ∈ qn the Jacobi vector fields J1 = θZ0 + tθT and J2 = θZn are
orthogonal at all points of γH .

Proof. We show, separately, that θZ0 and θT are both orthogonal to θZn at all points of γH .
We have

(θT (t)|θZn (t)) = trace
(
2Te−tH(etHZ∗n + ZnetH)

)
= 2trace(TZn + TZ∗n) = 0,

(θZ0 (t)|θZn (t)) = trace
(
(e−tHZ∗0 + Z0e−tH)(etHZn + Z∗netH)

)
= trace

(
Z∗0(etHZne−tH) + Z∗0Z∗n + Z0Zn + (etHZ0e−tH)Z∗n

)
= 0

because q ∩ q∗ and qn are orthogonal for the trace form of the canonical representation
of sln(C). Indeed, The expression in the last line is twice the sum of the real parts of the
product of Z0 and Zn and of e−tHZ∗0etH ∈ q ∩ q∗ and Zn. �

Proposition 4.12. If vn is horocyclic in κ, then

(4.18) V′ × f0 3 (v,H) −→ v∗ exp(H) v ∈ M (K) = P0(n) ∩K

is a diffeomorphism.

Proof. In fact, we can find a parabolic q in sln(C) such that q ∩ q∗ is its reductive Levi
factor and vn = qn ∩ κ . Then we can reduce to proving the proposition in the case where
K = SLn(C) and f0 = m0. We want to show that (4.8) is a local diffeomorphism. To this
aim, with the notation of §3.1, it suffices to prove that, for Z ∈ v and H, X ∈ m0, we have
θZ(1) , JX(1) when Z + X , 0. We split Z into the sum Z = Z0 + Zn, with Z0 ∈ v ∩ p0(n)
and Zn ∈ vn. Then the fact that θZ0 (1) + JX(1) , 0 if Z0 + X , 0 follows from Lemma 3.2
because of Lemma 4.11. Hence (4.8) is a connected covering of a simply connected
manifold and thus a global diffeomorphism. �

Proposition 4.12 can be slightly generalized. It was shown in [22, p.251] that there
is a unique maximal complex Lie subalgebra w of κ with v ⊆ w ⊆ v + v. The CR-
algebra (κ0, v) and the corresponding K0-homogeneous CR manifold M0 are called weakly
nondegenerate when w = v. If this is not the case, M0 turns out to be the total space of a
complex CR-bundle with nontrivial fibers over a weakly nondegenerate K0-homogeneous
CR manifold M′0, having CR algebra (κ0,w).

Proposition 4.13. Let w be the largest complex Lie algebra with v ⊆ w ⊆ v + v. If
wn = n(w) is horocyclic in κ, then (4.18) is a diffeomorphism.

Proof. As above, we reduce the proof to the case where K = SLn(C). The proof follows
the same pattern of the proof of Proposition 4.12. We denote by q a parabolic Lie sub-
algebra of sln(C) with qn = wn and use the notation of §3.1. We need to prove that, for
Z ∈ v′ = (v ∩ p0(n)) ⊕ vn and X,H ∈ m0, we have θZ(1) + JX(1) , 0 if Z + X , 0.



Mostow’s fibration and CR manifolds 17

To this aim it is convenient to split Z into a sum Z = U + W, with U ∈ v′ ∩ w ∩ w and
W ∈ qn. Let us consider first J = θU + JX . We note that J̇(0) = X + 1

2 [X,U − U∗] is
orthogonal to J(0) = U + U∗. Indeed (X|U + U∗) = 0 because w + w = v + v and, since
[U,U∗] ∈ w ∩ p0(n),

(U + U∗|[H,U − U∗]) = trace([H,U − U∗](U + U∗)) = 2trace(H · [U,U∗]) = 0.

By Lemma 3.2, this implies that J(1) , 0 if Z + X , 0. Finally, we note that θW (0)
and θ̇W (0) are orthogonal to both J(0) and J̇(0) to conclude, using again Lemma 3.2, that
JZ(1) + JX(1) = J(1) + JW (1) , 0 when X + Z = (X + U) + W , 0.

This shows that (4.18), being a connected smooth covering of a simply connected
manifold, is a global diffeomorphism. �

By using the argument in the proof of Proposition 4.9, we conclude:

Theorem 4.14. Let w be the largest complex Lie algebra with v ⊆ w ⊆ v + v. If
wn = n(w) is horocyclic in κ, then (4.15) is a global diffeomorphism and therefore we
obtain the K0-equivariant Mostow fibration of M− over M0

(4.19) K0 ×V0 f0
//

$$

M−

}}
M0

with Hermitian fiber. �

We keep the notation of §2.3 and denote by w the largest Lie subalgebra of κ with

(4.20) v ⊆ w ⊆ v + v.

Definition 4.1. We say that (κ0, v) is HNR if wn = n(w) is horocyclic.

For further reference, we reformulate the result obtained so far in the following form.

Theorem 4.15. If (κ0, v) is HNR, then we have the direct product decomposition

(4.21) K = K0 · exp(f0) · V′. �

Example 4.16. Minimal orbit of SU(2, 2) in F1,2(C4).
We fix in C4 the Hermitian form associated to the matrix(

I2
−I2

)
.

We let the corresponding group SU(2, 2) operate on the flag manifold F1,2(C4), consisting
of the pairs (`1, `2) of a line `1 and a 2-plane `2 with 0 ∈ `1 ⊂ `2 ⊂ C

4 . The minimal orbit
is

M0 = {(`1, `2) | `1 ⊂ `2 = `⊥2 },
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where the orthogonal is taken with respect to the fixed Hermitian form. It is the total
space of a CP1-bundle over a smooth real manifold and in particular is Levi-flat of CR
dimension 1. With K0 = S(U(2) × U(2)), K = S(GL2(C) ×GL2(C)), the stabilizer

V =

{(
a

a

)∣∣∣∣∣∣ a ∈ ST+
2 (C)

}
of the base point p0 = (〈e1 + e3〉, 〈e1 + e3, e2 + e4〉) (here T+

2 (C) is the group of upper
triangular 2× 2 complex matrices with non vanishing determinant and ST+

2 (C) its normal
subgroup consisting of those having determinant 1) has Lie algebra

v =



λ α

0 −λ

λ α

0 −λ


∣∣∣∣∣∣∣∣∣∣∣ λ,α ∈ C

 .
Clearly vn is not horocyclic. We note that

w = v + v =

{(
X 0
0 X

)∣∣∣∣∣∣ X ∈ sl2(C)
}

= v
′

is a complex Lie algebra. Thus, although V is not HNR, nevertheless we have a Mostow
fibration with Hermitian fibers by Theorem 4.14.

Remark 4.17. Example 3.7 shows that (4.18) is not, in general, a diffeomorphism
when (κ0, v) is not HNR.

5. Mostow fibration in general and the HNR condition

5.1 – The set P0(v)

To better understand the notion introduced in Definition 4.1 and to characterize the
fiber of the Mostow fibration of M− on M0 in general, it is convenient to rehearse some
notions that were introduced in [1, §3]. We simply assume, at the beginning, that κ is any
reductive Lie algebra over C.

For a Lie subalgebra a of κ, let us denote by n(a) the ideal consisting of the adκ-
nilpotent elements of its radical. Starting from any splittable Lie subalgebra v of κ we
construct a sequence {v(h)} of Lie subalgebras by setting recursively

(5.1)

v(0) = v,

v(h+1) = Nκ(n(v(h))) = {Z ∈ κ | [Z, n(v(h))] ⊂ n(v(h))}, ∀h ≥ 0.

Each v(h), with h ≥ 1, is the normalizer in κ of the ideal of adκ-nilpotent elements of
the radical of v(h−1). It was shown in [1] that v(h) j v(h+1) and n(v(h)) j n(v(h+1)) for all
h ≥ 0, and that the union e =

⋃
h≥0v(h) is a parabolic subalgebra of κ, with v ⊂ e and

n(v) = vn ⊂ n(e). We call e the parabolic regularization of v. Hence

(5.2) P(v) = {q | q is parabolic in κ and v ⊂ q, n(v) ⊂ n(q)}
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is nonempty. Let us prove a general simple lemma on parabolic Lie subalgebras.

Lemma 5.1. If q1, q2 are parabolic Lie subalgebras of κ, then the Lie subalgebra q =

q1 ∩ q2 + n(q1) is parabolic in κ.

Proof. We know (see e.g. [6, Ch.VIII,Prop.10]) that q1 ∩ q2 contains a Cartan subalgebra
h of κ. If R is the corresponding set of roots, then each qi (i = 1, 2) decomposes into a
direct sum

qi = h ⊕
∑

α∈R ,
α(Ai)≥0

κα,

where A1, A2 ∈ hR and, for each α ∈ R , κα = {Z ∈ κ | [A,Z] = α(A)Z, ∀A ∈ hR} is the
root space of α.

Take ε > 0 so small that ε · |α(A2)| < α(A1) if α(A1) > 0. Then

q = h ⊕
∑

α∈R ,
α(A1+εA2)>0

κα,

is parabolic. In fact, if L(qi) are the h-invariant reductive summands of qi and n(qi) the
ideals of nilpotent elements of their radicals, we have

q = (L(q1) ∩ L(q2)) ⊕ (L(q1) ∩ n(q2)) ⊕ n(q1). �

¿From now on we assume that κ is the complexification of its compact real form κ0.
Conjugation in κ will be understood with respect to κ0 . Using parabolic regularization
and Lemma 5.1 we obtain

Proposition 5.2. If (κ0, v) is n-reductive, thenP(v) contains a q having a conjugation-
invariant reductive Levi subalgebra.

Proof. We can take q = (e ∩ e) + n(e), for the parabolic regularization e of v. �

This shows that, for an n-reductive (κ0, v), the set

(5.3) P0(v) = {q ∈ P(v) | q = (q ∩ q) ⊕ n(q)}

is nonempty. For q ∈ P0(v) we will use L(q) = q ∩ q. The parabolic regularizazion
produces a small e and a corresponding smaller (e ∩ e) ⊕ n(e) in P0(v). We are however
more interested in the maximal elements of P(v). To explain the meaning of maximality,
we prove (cf. [1, Proposition 20])

Proposition 5.3. If (κ0, v) is n-reductive and q any maximal element of P0(v), then

(5.4) q = Lie
(
n(v) + L(q)

)
and n(q) =

∑
h

adh(L(q))(n(v)).

Proof. Let q ∈ P0(v) and denote by z the center of L(q). Being invariant under conjuga-
tion, it is the complexification of the Lie subalgebra z0 of a maximal torus t0 of κ0. Set
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zR = iz0. Following the construction of Konstant in [18], we consider the set Z consisting
of the nonzero elements ν of the dual z∗R for which

κν = {X ∈ κ | [Z, X] = ν(Z)X, ∀Z ∈ zR} , {0}.

This set Z shares many properties of the root system of a semisimple Lie algebra. With
the scalar product defined on zR by the restriction of the trace form of a faithful linear
representation of κ and the corrisponding dual scalar product on z∗R, we have

ν ∈ Z =⇒ −ν ∈ Z, and κν = κ−ν,(i)
ν1, ν2, ν1 + ν2 ∈ Z =⇒ [κν1 , κν2 ] = κν1+ν2 ,(ii)
ν1, ν2 ∈ Z and (ν1|ν2) > 0 =⇒ ν1 − ν2 ∈ Z,(iii)
∀ν ∈ Z, κν is an irreducible L(q)-module,(iv)

n(q) =
∑

ν>0
κν, for some lexicographic order in Z,(v)

∃ a basis {µ1, . . . , µ`} ⊂ Z of positive simple roots of z∗R.(vi)

The Lie subalgebra Lie(n(v) + L(q)) is contained in q and is a direct sum

Lie(n(v) + L(q)) = L(q) ⊕
∑

ν∈E
κν,

for a subset E of Z+ = {ν > 0}. Assume that there is a positive simple root µi which does
not belong to E . Since µi is simple, q′ = q ⊕ κ−µi is still a parabolic Lie subalgebra. Let
us show that it is an element of P0(v). We have

q
′ = L(q′) ⊕ n(q′), with L(q′) = L(q) ⊕ κµi ⊕ κ−µi and n(q′) =

∑
ν∈(Z+\{µi})

κν .

Note that L(q′) = q′ ∩ q̄′. An element X ∈ n(v) can be written in a unique way as a sum
X =

∑
ν∈E Xν with Xν ∈ κν. Then X ∈ n(q′), because E ⊂ Z+ \ {µi}. This shows that

n(v) ⊂ n(q′), i.e that q′ ∈ P0(v). Thus, if q is maximal in P0(v), then Lie(n(v) + L(q))
contains all κµi for i = 1, . . . , ` and thus is equal to q, because (ii) and the fact that every
positive root is a sum o simple positive roots yield that Lie(

∑`
i=1 κµi ) = n(q). Finally, it

follows from the discussion above that n(q) is the ad(L(q))-module generated by n(v). �

Analogously, we obtain

Proposition 5.4. If q is any maximal element of P(v), then

(5.5) q = Lie(n(v) + L(q)),

for any reductive Levi factor L(q) of q, and n(q) is the ad(L(q))-module generated by
n(v). �
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5.2 – A remark on the HNR condition

Assume that (κ0, v) is n-reductive and let Q be the parabolic subgroup of K corre-
sponding to a q in P0(v). Let Qn be the unipotent radical of Q and set V′ = V ·Qn. Then
V′ ∩ V

′
= V ∩ V and therefore the minimal K0 orbits in M− = K/V and M′− = K/V′

are diffeomorphic as K0-homogeneous manifolds: the CR algebras (κ0, v) and (κ0, v+ qn)
define two CR structures on the same M0 = K0/V0, the latter being stronger than the first.
These are the CR structures inherited from the embeddings M0 ↪→ M− and M0 ↪→ M′−.
Note that M′− is the basis of a complex fiber bundle M− → M′−, with Stein fibers bi-
holomorphic to Ck for some nonnegative integer k (cf. [1, Thm.30]). The choice of a
maximal q in P0(v) leads to a minimal v + qn, while a minimal q ∈ P0(v) to a maximal
v + qn, defining, when (κ0, v) is not HNR, a maximal K0-homogeneous CR structure on
M0 which is HNR and stronger than the original one.

Example 5.5. Minimal orbit of SU(2, 3) in F1,3(C5).
We denote by F1,3(C5) the flag manifold consisting of the pairs (`1, `3) of a line `1 and

a 3-plane `3 of C5 with 0 ∈ `1 ⊂ `3. We fix the Hermitian symmetric form of signature
(2, 3) in Cn, corresponding to the matrix(

I2
−I3

)
,

and consider the minimal orbit for the action of the real Lie group SU(2, 3) in F1,3(C5) :

M0 = {(`1, `3) ∈ F1,3(C5) | `1 ⊂ `
⊥
3 ⊂ `3}.

Fix on M0 the base point p0 = (〈e1 + e3〉, 〈e1 + e3, e2 + e5, e5〉). Its stabilizer in K is

V =




λ1 z1
0 λ2

λ1 0 z1
0 λ3 z2
0 0 λ2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi, zi ∈ C, λ

2
1 · λ

2
2 · λ3 = 1


,

with Lie algebra

v =




λ1 z1
0 λ2

λ1 0 z1
0 λ3 z2
0 0 λ2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi, zi ∈ C, 2λ1 + 2λ2 + λ3 = 0


.

The normalizer of vn in κ is the parabolic

q =




λ1 z1
0 λ2

λ3 α1 z2
α2 λ4 z3
0 0 λ5



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi, zi,αi ∈ C,

∑5

i=1
λi = 0


,
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which is also a maximal element in P0(v) and hence (s(u(2) × u(3)), v) is not HNR.
The Lie algebra

ṽ = v + qn =




λ1 z1
0 λ2

λ1 0 z2
0 λ3 z3
0 0 λ2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi, zi ∈ C, 2(λ1 + λ2) + λ3 = 0


is the Lie algebra of the stabilizer Ṽ in K = S(GL2(C) × GL3(C)) of p′0 ∈ F1,2,4(C5) for
p′0 = (〈e1 + e3〉, 〈e1 + e3, e4〉, 〈e1, e3, e4, e2 + e5〉). This corresponds to the intersection of
the SU(2, 3)-orbit

M′+ = {(`1, `2, `4) ∈ F1,2,4(C5) | `1 = `2 ∩ `
⊥
2 , dim(`4 ∩ `

⊥
4 ) = 1}

with its Matsuki dual K-orbit M′−. With L2 = 〈e1, e2〉 and L3 = 〈e3, e4, e5〉, we have

M′− =

 (`1, `2, `4)

∈ F1,2,4(C5)

∣∣∣∣∣∣ dim(`1 ∩ L2) = 0, dim(`1 ∩ L3) = 0, dim(`2 ∩ L2) = 0,
dim(`2 ∩ L3) = 1, dim(`4 ∩ L2) = 1, dim `4 ∩ L3 = 2

 .
This shows that, in this case, the strengthening of the CR structure on M0 corresponds
to considering the compact intersection with its Matsuki dual of an intermediate orbit in
some complex flag manifold of the same complex semisimple Lie group (in this case of
SL5(C)).

Proposition 5.6. Assume that (κ0, v) is n-reductive. Then, if w is a complex Lie sub-
algebra of κ with v ⊆ w ⊆ v ⊕ v, then also (κ0,w) is n-reductive.

Proof. The reductive Lie group κ has an invariant nondegenerate bilinear form β, which
is real and negative definite on κ0 . We observe that, if the pair (κ0, v) is n-reductive, then
vn = v ∩ v⊥, where v⊥ = {Z ∈ κ | β(Z,Z′) = 0, ∀Z′ ∈ v}, and that v + v has the direct sum
decomposition

v + v = v ⊕ vn.

If w is a complex Lie subalgebra with v ⊆ w ⊆ v + v, then w = v ⊕ (w ∩ vn). Since β
defines a duality pairing between vn and vn, we obtain the decomposition

w = (w ∩ w) ⊕ wn, with wn = vn ∩ (w ∩ vn)⊥, w ∩ w = (v ∩ v) ⊕ (vn ∩ w) ⊕ (vn ∩ w),

showing that also (κ0,w) is n-reductive. �

Remark 5.7. If (κ0, v) is n-reductive, then v is the Lie algebra of an algebraic Lie
subgroup V of K. This is the content of [1, Thm.26]. In particular, all Lie subalgebras w
with v ⊆ w ⊆ v + v are Lie(W) for an algebraic Lie subgroup W of K.

Example 5.8. Minimal orbit of SU(2, 3) in F1,2(C5).
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We partly use the notation of Example 5.5. Denote by M0 the minimal orbit of
SU(2, 3) in the flag F1,2(C5) of nested lines and 2-planes.

M0 = {(`1, `2 ∈ F1,2(C5) | `2 ⊂ `
⊥
2 }

is a CR manifold of type (3, 4). It is the total space of a CP1-bundle on the CR manifold M′0
of isotropic 2-planes in the Grassmannian Gr 2(C4), which has type (2, 4). The stabilizer
V of the base point p0 = (〈e1 + e3〉, 〈e1 + e3, e2 + e4〉), has Lie algebra

v =




λ1 z1
0 λ2

λ1 z1 z2
0 λ2 z3
0 0 λ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi, zi ∈ C

2λ1 + 2λ2 + λ3 = 0


.

The largest q ∈ P0(v) has

qn =




0 z1
0 0

0 z2 z3
0 0 z4
0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
zi ∈ C


and hence (s(su(2) × su(3)), v) is not HNR. We note however that

w =




λ1 ζ1
ζ2 λ2

λ1 ζ1 z1
ζ2 λ2 z2
0 0 λ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi, ζi, zi ∈ C

2λ1 + 2λ2 + λ3 = 0


⊂ v + v

has a horocyclic wn. The orthogonal m0 of v + v in s(p(2) × p(3)) is

m0 =


X

−X
0


∣∣∣∣∣∣∣∣ X ∈ p(2)


and, according to Theorem 4.14 it can be used to describe the typical fiber of the Mostow
fibration M− → M0 in this case.

5.3 – Decomposition of unipotent Lie groups

A unipotent Lie group is a connected and simply connected Lie group N having a
nilpotent Lie algebra n. Then the exponential map exp : n→ N is an algebraic diffeomor-
phism and each Lie subalgebra e of n is the Lie algebra of an analytic closed subgroup E
of N.
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Proposition 5.9. Let N be a unipotent Lie group and S a group of automorphisms of
its Lie algebra n, which acts on n in a completely reducible way. If E a Lie subgroup of N
with an S-invariant Lie algebra e, then we can find an S-invariant linear complement l of
e in n such that

(5.6) l × E 3 (X, x) −→ exp(X) · x ∈ N

is a diffeomorphism onto.

Proof. We argue by recurrence on the sum of the dimension n of n and the codimension
k of e in n. The statement is indeed trivial when n = 1, or k = 0. If k = 1, then e is an ideal
in n and has a 1-dimensional S-invariant complement l in n. Since l is a Lie subalgebra,
using e.g. [30, Lemma 3.18.5] we conclude that (5.6) is a diffeomorphism in this case.

Assume now that k > 1 and that the statement has already been proved for subalgebras
e of codimension lesser than k or nilpotent Lie algebras n of dimension lesser than n. Since
n is nilpotent, its center c has positive dimension and is S-invariant. If c ∩ e , {0}, then
A = exp(c ∩ e) is a nontrivial normal subgroup of N. Since dim(N/A) < n and S acts
in a completely reducible way on n/(c ∩ e), by the recursive assumption we can find an
S-invariant linear complement l of e in n such that, for its projection l′ in n/(c ∩ e), the
map

f ′ : l′ × (E/A) 3 (X′, x′) −→ exp(X′) · x′ ∈ N/A
is a diffeomorphism. This implies that (5.6) is also a diffeomorphism. In fact, if ζ ∈ N, by
the surjectivity of f ′ there is a pair (X, y) ∈ l×E such that exp(X)·y = ζ·a, for some a ∈ A.
This shows that ζ = exp(X) · (y · a−1) and therefore (5.6) is onto. If ζ = exp(X1) · (x1) =

exp(X2) · (x2) · a, with X1, X2 ∈ l, x1, x2 ∈ E and a ∈ A, then X1 = X2 = X because
the projection l → l′ is a linear isomorphism. Moreover, the correspondence ζ → X is
C∞-smooth, because f ′−1 is smooth. Then ζ → x = exp(−X) · ζ ∈ E is also smooth, and
ζ→ (X, exp(−X)ζ) yields a smooth inverse of (5.6).

If c ∩ e = {0}, then by the recurrence assumption, we can take an S-invariant linear
complement l of e in n containing c and such that

f ′ : (l/c) × ((E · C)/C) 3 (X′, x′) −→ exp(X′) · x′ ∈ N/C.

is a diffeomorphism. We claim that, with this choice, (5.6) is a diffeomorphism. Indeed,
(E ·C)/C ' E and therefore for ζ ∈ N there is a unique x ∈ E, with x = φ(ζ) for a smooth
function φ : N→ E, such that, for some Z ∈ c and Y ∈ l,

ζ · exp(Z) = exp(Y) · x⇒ ζ = exp(Y − Z) · x.

The exponential is a diffeomorphism of n onto N. If we denote by log : N→ n its inverse,
we obtain X = Y − Z = log(ζ · x−1) ∈ l and

N 3 ζ→
(
log(ζ · [φ(ζ)]−1),φ(ζ)

)
∈ l × E

is a smooth inverse of (5.6). This completes the proof. �

With the notation of the previous section, we will apply Proposition 5.9 to the case
where N = Qn and n = qn, for a minimal q ∈ P0(w), while e = vn and S = Ad(V0). Since
V0 is compact, its adjoint action on qn is completely reducible.



Mostow’s fibration and CR manifolds 25

5.4 – Structure of the typical fiber

The quotient K/Q of K by a parabolic subgroup Q is compact and thus a homoge-
neous space of its compact form K0. Thus

(5.7) K = K0 ·Q.

Set κ = Lie(K), q = Lie(Q), and choose K0 to contain a maximal compact subgroup of Q.
Then Q has a Levi-Chevalley decomposition Q = L(Q) ·Qn, whose reductive factor L(Q)
has Lie algebra L(q) = q ∩ q. The conjugation is taken with respect to the real compact
form κ0 and Qn is the unipotent factor of Q, with Lie algebra qn. We consider the Cartan
decomposition κ = κ0 ⊕p0, with p0 = i · κ0 . Using the Cartan decomposition of L(Q), we
obtain the direct product decomposition

(5.8) Q = L(Q) · exp(n(q)) = L0(Q) · exp(p0 ∩q) · exp(n(q)).

We keep the notation of the previous sections, with w the maximal complex Lie sub-
algebra with v ⊆ w ⊆ v + v and take q in P0(w). Then e = v + qn is a Lie subalgebra of κ
and the pair (κ0, e) has the HNR property. Set

(5.9) f0 = p0 ∩ (v + qn)⊥.

By (4.21), we obtain the direct product decomposition

(5.10) K = K0 · exp(f0) · exp(vn + qn) · exp(v ∩ p0).

We use Proposition 5.9 to decompose exp(vn +qn) : we can find an Ad(V0)-invariant linear
subspace l of (vn + qn) such that vn + qn = l ⊕ vn and

(5.11) l ⊕ vn 3 (X,Y) −→ exp(X) · exp(Y) ∈ Vn ·Qn = exp(vn + qn)

is a diffeomorphism. We obtained:

Theorem 5.10. Let f0 and l be defined by (5.9) and (5.11). Then we have a direct
product decomposition

(5.12) K = K0 · exp(f0) · exp(l) · V′,

where V′ = exp(vn) · exp(v ∩ p0).
Then F0 = exp(f0) · exp(l), with the adjoint action of V0, is the typical fiber of the

Mostow fibration:

(5.13) M− ' K/V ' K0 ×V0 F0. �

Lemma 5.11. If N is a unipotent subgoup of K, then, for every p ∈ P0(n), the map

(5.14) N 3 z −→ z∗pz ∈ Np = {z∗pz | z ∈ N}

is a diffeomorphism.
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Proof. In fact the stabilizer Stab(p) of p for the right action

K × P0(κ) 3 (z, x)→ z∗ · x · z ∈ P0(κ)

of K on P0(κ) is a compact group and hence has trivial intersection with N. Thus (5.14)
is a diffeomorphism with the image, being the restriction to N ' N/{eK} of the diffeomor-
phism K/Stab(p)→ P0(κ). �

Corollary 5.12. Fix q ∈ P0(w) and let f0 and l be the corresponding subspaces of κ
of Theorem 5.10. Then the elements X ∈ f0 and Z ∈ l of the decomposition

ζ = u · exp(X) · exp(Z) · v, with u ∈ K0, v ∈ exp(vn) · exp(v ∩ p0)

are obtained in the following way:

(a) [0, 1] 3 t → exp(2tX) is the geodesic in P0(κ) joining eK to the unique point p0 of
Ñζ∗·ζ = {z∗ · ζ∗ · ζ · z | z ∈ V ·Qn} at minimal distance from eK;

(b) Z is the unique element of l such that exp(Z∗)·p0 ·exp(Z) belongs to Np0 = {z∗ ·p0 ·z |
z ∈ V}.

Proof. Indeed the Mostow fibration of M′− = K/(V ·Qn) can be taken to have a hermitian
typical fiber exp(f0) and correspondingly we obtain a unique decomposition

ζ = u · exp(X) · ξ · exp(Y) with ξ ∈ Qn and Y ∈ v ∩ p0,

The characterization of X coming from the proof of Proposition 4.5 yields (a).
Next we consider pξ = ξ∗ · exp(2X) · ξ = ξ∗ · p0 · ξ. By Lemma 5.11 and the choice

of l we know that the element pξ of {z∗ · p0 · z | z ∈ Qn} uniquely decomposes as a product
w∗ · exp(Z∗) · p0 · exp(Z) · w with w ∈ Vn and Z ∈ l. This completes the proof. �

6. Application to Dolbeault and CR cohomologies

The cohomology groups of the tangential Cauchy-Riemann complex on real-analytic
forms on M0 is the inductive limit of the corresponding Dolbeault cohomology groups
of its tubular neighborhoods in M−. We know by [13] that in some degrees these groups
coincide with those computed on tangential smooth forms or on currents. We will employ
Andreotti-Grauert theory to compare the tangential CR cohomology on M0 with the cor-
responding global Dolbeault cohomology of M−. To this aim we will use the Mostow
fibration M− → M0 to construct a non negative exhaustion fuction for M−, vanish-
ing on M0, and having a complex Hessian whose signature reflects the pseudoconvex-
ity/pseudoconcavity of M0. In this way we prove relations of the CR cohomology of M0
with the Dolbeault cohomololy of the K-orbit M−, similar to what J.A.Wolf did in [27]
for the relationship of the open orbits M+ of a real form G0 of a complex semisimple Lie
group G in a flag M of G with the structure of their Matsuki duals M− = M0, which in
this case are compact complex manifolds.
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6.1 – An Exhaustion Function for M−

In [12] H. Grauert noticed that a real-analytic manifold admits a fundamental systems
of Stein tubular neighborhoods in any of its complexifications. In fact, a homogeneous
analogue of Grauert’s theorem is the fact that the complexification K of a compact Lie
group K0 is Stein, and the isomorphism provided by the Cartan decomposition

K0 × k0 3 (x, X) −→ x · exp(iX) ∈ K

also yields the exhaustion function

K 3 x · exp(iX) −→ ‖X‖2 = −k (X, X) ∈ R,

which is zero on K0, positive on K \K0 and strictly pseudo-convex everywhere. Here and
in the following we shall denote by k both the negative definite invariant form of a faithfull
unitary representation of k0 and its C-bilinear extension to κ. When κ0 is semisimple, the
adjoint representation is faithful and we may take as k the Killing form.

We proceed in a similar way to construct an exhaustion function on M− for the canon-
ical embedding M0 ↪→ M− of a n-reductive K0-homogeneous compact CR manifold M0.
We use the notation of the previous sections.

Assume that the pair (κ0, v) is n-reductive and HNR. We already noticed that the last
condition is natural if we consider on M0 maximal K0-invariant CR structures. Then, by
Corollary 5.12, we have a direct product decomposition

K = K0 · exp(f0) · exp(vn) · exp(v ∩ p0)(6.1)

with p0 = i·κ0 and f0 = (v+v)⊥∩p0 .Moreover, the exp(f0)-term in (6.1) is characterized
by  if ζ = u · exp(X) · v, with u ∈ K0, X ∈ f0 and v ∈ V, then

‖X‖ = 1
2 dist(ζ∗ζ,N), for N = {v∗ · v | v ∈ V} ⊂ P0(κ).

(6.2)

This is indeed a consequence of Corollary 5.12 when l = {0}.
By passing to the quotient, the map

K0 × f0 3 (x, X) −→ ‖X‖2 = k (X, X) ∈ R.

defines a smooth exhaustion function (as usual square brackets mean equivalence classes)

(6.3) φ : M− ' K0 ×V0 f0 3 [x, X] −→ ‖X‖2 ∈ R .

We have:

Lemma 6.1. If (κ0, v) is n-reductive and HNR, then the map φ of (6.3) has the prop-
erties:

(1) φ ∈ C∞(M−,R) and φ ≥ 0 on M−;
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(2) φ−1(0) = M0 and dφ , 0 if φ > 0 ;

(3) φ is invariant under the left action of K0 on M− :

φ(x · p) = φ(p), ∀p ∈ M− , ∀x ∈ K0. �

Notation 6.1. The level and sublevel sets of φ will be denoted by

(6.4) Φc = {p ∈ M− | φ(p) = c} b M− and Ωc = {p ∈ M− | φ(p) < c}.

6.2 – K0-Orbits in M−

The level sets Φc are foliated by K0-orbits. Since all points of M− have representatives
of the form x · exp(X) with x ∈ K0 and X ∈ f0, then every K0-orbit intersects the fiber F0
over the base point p0 at a point pX = [exp(X)], for some X ∈ f0. An x ∈ K0 stabilizes
pX if and only if x · exp(X) is still a representative of pX , and this, by the equivalence
relation defining K0 ×V0 f0, means that x ∈ V0 and Ad(x)(X) = X. Indeed the equation
x exp(X)z = exp(X) with z ∈ V implies, by the uniqueness of the Mostow decomposition,
that z = x−1 ∈ V0 and x exp(X)x−1 = exp(Ad(x)(X)) = exp(X), yielding Ad(x)(X) = X.

Thus the K0-orbit

MX = {x · pX = [x · exp(X)] | x ∈ K0}(6.5)

in M− through pX can be identified with the homogeneous space K0/VX , where

VX = {x ∈ V0 | Ad(x)(X) = X},

is the stabilizer of pX in K0. It is a closed Lie subgroup of K0 with Lie algebra

vX = {Y ∈ v0 | [Y, X] = 0}.

Lemma 6.2. MX is a compact K0-homogeneous CR-manifold with CR-algebra
(
κ0,Ad(exp(X))(v)

)
at pX = [exp(X)]. �

Remark 6.3. In general, MX may not be diffeomorphic to M0. Indeed, M0 is a minimal
K0-orbit in M− and MX is diffeomorphic (and CR-diffeomorphic) to M0 if and only if MX

and M0 have the same dimension.

For X ∈ f0, the left translation M− 3 p −→ exp(X) · p ∈ M− is a biholomorphism of
M− which transforms M0 onto a CR-diffeomorphic submanifold

(6.6) M̃X = exp(X) · M0.

Lemma 6.4. For X ∈ f0, we have

(6.7) M̃X ⊂ {φ ≤ ‖X‖2} = Ω‖X‖2 .
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Proof. Let π : K 3 ζ → [ζ] ∈ K/V ' M− be the canonical projection. Any point of M0
is π(u) for some u ∈ K0 and then the points p of M̃X have the form p = exp(X)π(u) =

π(exp(X) · u). Set ζ = exp(X) · u. We know that φ(p) is the square of the half-distance in
P0(K) from the base point eK to

Nζ∗ζ = {v∗ ·ζ∗ ·ζ·v | v ∈ V}.

Since the point (ζ∗·ζ) belongs to Nζ∗·ζ and has distance 2‖X‖ from eK, (in fact t → u∗ ·exp(2tX)·u
is the geodesic joining eK to (ζ∗ ·ζ)), it follows that φ(p) ≤ ‖X‖2. �

We summarize:

Proposition 6.5. Let c > 0. Then

(6.8) Φc =
⋃

X∈f0,
‖X‖2=c

MX (disjoint union), M̃X ⊂ {φ ≤ ‖X‖2}, ∀X ∈ f0 . �

In particuar, for c > 0, we can draw through each point of Φc a translate M̃X of M0,
which is CR-diffeomorphic to M0 and tangent to Φc from inside, i.e. lying in Ωc. This
means that the boundary Uc of Ωc is at each point less convex than M0.

6.3 – Application to Dolbeault and CR Cohomologies I

By Andreotti-Grauert theory (see [4]) we know that for every coherent sheaf F on an
r-pseudoncave complex manifold X we have

H j(X,F ) < ∞, ∀ < r − hd(F ),

where hd(F ) is the homological dimension of F .
We obtain the following:

Theorem 6.6. Let M0 be a compact n-reductive homogeneous CR manifold, with
(κ0, v) HNR and canonical complex embedding M0 ↪→ M−.

If M0 is an r-psudoconvave CR-manifold, then M− is an r-pseudoconcave complex
manifold and for every coherent sheaf F we have

(6.9) dim
(
H j(M0,F ) ' H j(M−,F )

)
< ∞, ∀ j < r − hd(F ).

In particular,

(6.10) dim
(
Hp, j(M0) ' Hp, j(M−)

)
< ∞, ∀ j < r.

Here we used the notation Hp, j for the ∂̄ and ∂̄M0 -cohomologies on forms of type
(p, ∗). Because of the validity of the Poincaré lemma in degree j, for 0 < j < r (see
[25]), they coincide with the Čech cohomology with coefficients in the sheaf of germs
of CR or holomorphic p-forms. Moreover, in this range, the tangential Cauchy-Riemann
complexes on currents, C∞-smooth forms and real-analytic forms on M0 have isomorphic
finite dimensional cohomology groups.
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Proof. By the HNR assumption, the exhaustion function φ in (6.3) is well defined. Then
to verify (6.9) we can apply Andreotti-Grauert’s theory, after showing that, for c > 0, each
subdomain Ωc = {φ < c} is r-pseudoconcave. To this aim, we prove that the complex
Hessian of φ admits at least r negative eigenvalues on the analytic tangent to Φc = ∂Ωc.
By exploiting the K0-invariance of φ, we can, without any loss of generality, restrict our
consideration to points p0 = [exp (X)] ∈ Φc, with ‖X‖2 = c ∈ R. We may consider (0, 1)-
vector fields which are tangent to the submanifold M̃X , defined in (6.6) and that are also
tangent to ∂Ωc at p0, because M̃X is tangent to Φc at p0. By Lemma 6.4, M̃X is contained
in Ωc = {φ ≤ ‖X‖2}. Since M̃X is CR-diffeomorphic to M0, it is r-pseudoconcave. Being
M̃X ⊂ Ωc, the restriction of the complex Hessian of φ to the analytic tangent to M̃X at
p0 has at least as many negative eigenvalues as the Levi form of M̃X in the codirection
Jdφ([exp(X)]), which, by the assumption, are at least r. This completes the proof. �

6.4 – Application to Dolbeault and CR cohomologies II

In this section we want to exploit the amount of pseudo-convexity of the exhaus-
tion function φ. We keep the assumption that (κ0, v) is n-reductive and HNR and set
q = {Z ∈ κ | [Z, vn] ⊂ vn} for the maximal parabolic subalgebra in P0(v). We recall that
vn = qn is the nilradical of q. Let Q be the parabolic subgroup of K with Lie(Q) = q and
Qr its conjugation-invariant reductive factor. Let $ : K → M− = K/V be the quotient
map. The image of Qr by $ is a Qr-homogeneous complex submanifold Q− of M−.

Lemma 6.7. For every X ∈ f0, the CR manifold M̃X and the complex manifold Q− are
transversal at pX and their analytic tangent spaces at pX are orthogonal for the complex
Hessian of φ.

Proof. The pull-backs of T 0,1
pX M̃X and T 0,1

pX Q− to the base point p0 by the bi-holomorphic
map p→ exp(X) · p are, respectively, vn and qr/(v ∩ v). This is a consequence of the
fact that X ∈ qr. The statement follows from the fact that qr = q̄r and [qr, vn] ⊂ vn,
[qr, v̄n] ⊂ v̄n. �

Theorem 6.8. Let M0 be a compact n-reductive homogeneous CR manifold of type
(n, k), with (κ0, v) HNR and canonical complex embedding M0 ↪→ M−.

If M0 is an r-psudoconvave CR-manifold, then M− is n − r-pseudoconvex complex
manifold and for every coherent sheaf F we have

(6.11) dim
(
H j(M0,F ) ' H j(M−,F )

)
< ∞, ∀ j > n − r.

In particular,

(6.12) dim
(
Hp, j(M0) ' Hp, j(M−)

)
< ∞, ∀ j > n − r.

Proof. By [13, Theorem 2.1], under the r-pseudoconcavity assumption, the tangential CR
cohomology groups on M0 are the inductive limits of the corresponding groups of sheaf
and Dolbeault cohomology of the tubular neighborhoods of M0 in M−. While computing
the Levi form of φ, it suffices to note that its restriction to Q− is strictly pseudo-convex,
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since it is the exhaustion function associated to the canonical CR-embedding M0 ∩N− ↪→
N− of a totally real (K0 ∩ Qr)-homogeneous manifold. Indeed, by [5, Theorem 4.1], the
distance from the totally geodesic submanifold N′ = {ζ∗ζ | ζ ∈ V ∩Qr} in the negatively
curved space M ′ = Qr/(Qr ∩ K0) is strictly convex on M ′ \ N′, and φ|Q− pulls back on
Qr to the composition of ζ→ ζ∗ζ with the square of the distance from N′.

Hence, for X , 0, the complex Hessian of φ restricts to a Hermitian symmetric form
having, by Lemma 6.7, at least r + k − 1 positive eigenvalues on the analytic tangent of
Φc at pX .

The thesis is then a consequence of the isomorphisms proved in [4, §20]. �

Example 6.9. Fix integers 1 ≤ p < q ≤ n and consider the real action of SLn+1(C)
on the Cartesian product Grp(Cn+1) × Grq(Cn+1) of the Grassmannians of p and q planes,
described by

a · (`p, `q) = (a(`p), ā(`q)), ∀ a ∈ SLn+1(C), `p ∈ Grp(Cn+1), `q ∈ Grq(Cn+1).

The orbits of the real form G0 = SLn+1(C) are parametrized by the dimension of the
intersection `p ∩ `q : with k0 = max{0, p + q − n − 1} we have the orbits

M+(k) = {(`p, `q) ∈ Grp(Cn+1) × Grq(Cn+1) | dimC(`p ∩ `q) = k}, k0 ≤ k ≤ p.

The complexification K = SLn+1(C) of the compact form K0 = SU(n + 1) acts on
Grp(Cn+1) × Grq(Cn+1) by

a · (`p, `q) = (a(`p), Ta−1(`q)), ∀a ∈ SLn+1(C), `p ∈ Grp(Cn+1), `q ∈ Grq(Cn+1).

Consider the polarity Grh(Cn+1) 3 `h → `0
h ∈ Grn+1−h(Cn+1) defined by the symmetric

bilinear form
b(v,w) = (Tw) · v =

∑n
i=0viwi.

Then the orbits of K in Grp(Cn+1) × Grq(Cn+1) are parametrized by:

M−(k) = {(`p, `q) ∈ Grp(Cn+1) × Grq(Cn+1) | dimC(`p ∩ `
0
q) = p − k}, k0 ≤ k ≤ p.

The manifolds M+(k) and M−(k) are Matsuki-dual to each other. In fact, since SU(n + 1)
preserves Hermitian orthogonality in Cn+1 and `q and `0

q are Hermitian orthogonal in Cn+1,
the pair (`p, `q) belongs to M0(k) = M+(k) ∩ M−(k) iff

`p = (`p ∩ `q) ⊕ (`p ∩ `
0
q), and either dim(`p ∩ `q) = k, or dim(`p ∩ `

0
q) = p − k.

Set n1 = p − k, n2 = k, n3 = n + 1 + k − p − q, n4 = q − k. Then, taking as base point,
with obvious notation, p0 = (Cn1 ⊕Cn2 ,Cn2 ⊕Cn4 ), the stabilizer of p0 in K = SLn+1(C)
has Lie algebra

v =



Z1,1 Z1,2 Z1,3 Z1,4
0 Z2,2 0 Z2,4
0 0 Z3,3 Z3,4
0 0 0 Z4,4.


∣∣∣∣∣∣∣∣∣∣∣ Zi, j ∈ C

ni×n j

 ∩ sln+1(C).
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Indeed, in the block matrix Z = (Zi, j)1≤i, j≤4 se have Z3,1 = 0, Z3,2 = 0, Z4,1 = 0, Z4,2 = 0
because Z(〈e1, . . . , ep〉) ⊂ 〈e1, . . . , ep〉. Moreover, the inclusion
TZ(Cn2 ⊕Cn4 ) ⊂ Cn2 ⊕Cn4 is equivalent to

TZ1,1
TZ2,1 0 0

TZ1,2
TZ2,2 0 0

TZ1,3
TZ2,3

TZ3,3
TZ4,3

TZ1,4
TZ2,4

TZ3,4
TZ4,4




0
X2
0
X4

 =


0
Y2
0
Y4

 , ∀X2 ∈ C
n2 , X4 ∈ C

n4 ,

and this yields Z2,1 = 0, Z2,3 = 0, Z4,3 = 0. The compact CR manifold M0(k) has CR
dimension equal to ν = (n1n2 +n1n3 +n1n4 +n2n4 +n3n4) and CR-codimension d = 2n2n3.
The case k = k0, where n3 = 0, is the one where v is parabolic, and M0(k0) = M−(k0) is a
complex flag manifold. In general, (κ0, vn) is HNR because

vn =



0 Z1,2 Z1,3 Z1,4
0 0 0 Z2,4
0 0 0 Z3,4
0 0 0 0


∣∣∣∣∣∣∣∣∣∣∣ Zi, j ∈ C

ni×n j

 ∩ sln+1(C)

is the nilpotent radical of

q =



Z1,1 Z1,2 Z1,3 Z1,4
0 Z2,2 Z2,3 Z2,4
0 Z3,2 Z3,3 Z3,4
0 0 0 Z3,4


∣∣∣∣∣∣∣∣∣∣∣ Zi, j ∈ C

ni×n j

 ∩ sln+1(C)

Then

(6.13) f0 = m0 =



0 0 0 0
0 0 Z2,3 0
0 −Z∗2,3 0 0
0 0 0 0


∣∣∣∣∣∣∣∣∣∣∣ Z2,3 ∈ C

n2×n3

 ' C
n2×n3 .

The CR algebra (κ0, v) is weakly degenerate when k < p and strictly nondegenerate,
according to [22], when k = p. The vector valued Levi form is

(Z1,2,Z1,3,Z1,4,Z2,4,Z3,4)→ Z∗1,2Z1,3 + Z2,4Z∗3,4

and hence all the nonzero scalar Levi form have a Witt index equal to µ = (n1+n4) =

(p−k)+(q−k) = p+q−2k. The complex manifold M−(k) has dimension N = n1n2 +n1n3 +

n1n4 +n2n3 +n2n4 +n3n4 and, according to Theorems 6.6 and 6.8 is µ-pseudoconcave and
(ν − µ)-pseudoconvex.

6.5 – Application to Dolbeault and CR cohomologies III

In this section we extend Theorem 6.6 to the case where we do not assume that (κ0, v)
is HNR. To this aim we utilize an r-pseudoconcave exhausting functions which is only
continuous (see [9, 10, 16, 28]). Namely, we will consider the function

(6.14) φ([ζ]) = dist2(ζ∗ζ,N), for ζ ∈ K,
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where N = {v∗v | v ∈ V} as in (4.5) and [ζ] is the element of M− = K/V corresponding to
ζ ∈ K.

We recall that a continuous function φ, defined on a complex ν-dimensional manifold
M−, is said to be weakly r-pseudoconcave if, for every point p ∈ M−, we can find a
coordinate neighborhood (U, z), centered at p, such that, for every (ν− r + 1)-dimensional
linear subspace ` of Cν, for every coordinate ball B b U and ψ plurisubharmonic on a
neighborhood of B̄, with φ ≥ ψ on ` ∩ ∂B we also have φ ≥ ψ on ` ∩ B.

We say that φ is strictly r-pseudoconcave if, for each p ∈ M−, we can find an open
coordinate neighborhood (U, p) centered in p and an ε > 0 such that φ + ε|z|2 is weakly
r-pseudoconcave in U.

By Bungart’s approximation theorem ([9, Theorem 5.2]) strictly r-pseudoconcave
functions can be uniformly approximated on compacts by piece-wise smooth strictly r-
pseudoconcave functions. Thus (see e.g. [2, Chapter IV]) we can still apply the Andreotti-
Grauert theory when we have a strictly-r-pseudoconcave exhaustion function which is
only continuous.

Our application relies then on the following lemmas.

Lemma 6.10. Let φ be a continuous exhaustion function on M− and assume that, for all
c > 0 and p0 ∈ Φc = {p ∈ M− | φ(p) = c} there is a germ of CR generic r-pseudoconcave
CR submanifold M0(p0) of M− through p0 with M0(p0) ⊂ {φp ≤ c}. Then φ is weakly
r-pseudoconcave.

Proof. We argue by contradiction, assuming that, for every coordinate neighborhood
(U, z) centered at a point p0 ∈ M, we can find a (ν − r + 1)-dimensional linear subspace
` of Cν and a plurisubharmonic ψ, defined on a neighborhood of the closure B̄ of a coor-
dinate ball in U, and a point p1 ∈ ` ∩ B where φ(p1) < ψ(p1), while φ(p) ≥ ψ(p) for all
p ∈ ∂B∩`. Clearly the same condition is satisfied by any linear (ν−r+1)-plane sufficiently
close to `, so that we can assume that ` intersects M0(p1) transversally. The intersection
M0(p1) ∩ ` is then a 1-pseudoconcave CR submanifold of `, but the restriction of ψ to
` ∩ M0(p1) ∩ B̄ contradicts then the maximum principle, since takes at the interior point
p1 a value larger than the supremum of the values taken on the boundary ` ∩ M0(p1) ∩ B̄
(see e.g. [15]). The contradiction proves that φ is weakly r-pseudoconcave. �

Lemma 6.11. The exhaustion function φ defined by (6.14) is strictly r-pseudoconcave
on M− \ M0.

Proof. By Proposition 4.8, there is c0 > 0 such that φ is strictly r-pseudoconcave when
0 < φ(p) ≤ c2

0, since, by [16, Lemma 2.6], for a smooth function the notion of strict r-
pseudoconcavity coincides with the requirement about the signature of its complex Hes-
sian.

For ζ ∈ K, we can consider the function φζ(p) = φ(ζ−1 · p), which is continu-
ous and weakly r-pseudoconcave on M− \ (ζ · M0) and strictly r-pseudoconcave when
it takes positive values smaller than c2

0. Let p0 ∈ M− with φ(p0) > c2
0 and fix a rela-

tively compact coordinate neighborhood (U, z) in M−, centered at p0. We can assume,
for a fixed δ with 0 < 2δ < c0, that U ⊂ {p | |φ(p) − φ(p0)| < δ2}. We observe that
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φ(p) = infφ([ζ])=φ(p0)−δ(
√
δ +

√
φζ(p))2. The functions p → ηζ(p) = (

√
δ +

√
φζ(p))2,

when φ(ζ) = φ(p0) − δ2, are uniformly strictly r-pseudoconcave on a neighgorhood of
Ū. Thus, for a small ε > 0, the functions ηζ + ε|z − z0|

2, for φ(ζ) = φ(p0) − δ2, are still
r-pseudoconcave on U. Passing to the infimum, we deduce, by using [10, Proposition 2.2.
(ii)] that φ + ε |z − z0|

2 is weakly r-pseudoconcave on U. The proof is complete. �

¿From this and the remarks at the beginning of this subsection, we obtain:

Theorem 6.12. Let M0 be a compact n-reductive homogeneous CR manifold, with
canonical complex embedding M0 ↪→ M−.

If M0 is an r-psudoconvave CR-manifold, then M− is an r-pseudoconcave complex
manifold and for every coherent sheaf F we have

(6.15) dim
(
H j(M0,F ) ' H j(M−,F )

)
< ∞, ∀ j < r − hd(F ).

In particular,

(6.16) dim
(
Hp, j(M0) ' Hp, j(M−)

)
< ∞, ∀ j < r. �
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[6] N. Bourbaki, Éléments de mathématique, Hermann, Paris, 1975, Fasc. XXXVIII: Groupes
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