Quasibases for nonseparable p-Groups

Dedicated to Laszlo Fuchs on his 95th birthday

OTTO MUTZBAUER (*) – ELIAS TOUBASSI (**) – ANDRIJA VODOPIVEC (***)

Abstract – This paper is an extension of the work developed in [4] on quasibases of abelian p-groups and based on the doctoral dissertation of Andrija Vodopivec [5]. We introduce the ideas of a δ-combination and height of an inductive quasibasis and show that the height of a quasibasis is invariant for related inductive quasibases. Moreover, an abelian p-group is separable if and only if the heights of all δ-combinations are zero. Finally, we show that an abelian p-group is not reduced if and only if there exists a δ-combination with infinite height.

Mathematics Subject Classification (2010). Primary 20K10

Keywords. p-group, quasibasis, separable, reduced

We cordially thank the referee for the engaged reading and for many really helpful suggestions.

1. Introduction

We deal with abelian groups and we use all definitions and conventions in [3]. For some few classes of torsion-free groups there is a description by cardinals. For all other torsion-free groups there exists basically only a presentation by generators and relations, unavoidably. In view of the convenient description of (simply presented) torsion groups by Ulm-Kaplansky invariants, the use of generators and relations seems to be disadvantageous for torsion groups. But often groups are considered as extensions, and then things change. An explicit description of a mixed group as an extension of a torsion by a torsion-free group is impossible if the torsion group is given by

(*) Indirizzo dell’A.: University of Würzburg, Math. Inst., Emil Fischerstr. 30, 97074 Würzburg, Germany
E-mail: mutzbauer@mathematik.uni-wuerzburg.de

(**) Indirizzo dell’A.: University of Arizona, Dept. of Math., Tucson, AZ 85721, U.S.A.
E-mail: elias@math.arizona.edu

(***) Indirizzo dell’A.:
E-mail: vodopivec72@yahoo.de
Ulm-Kaplansky invariants. The torsion group has to be presented by generators and relations, the same way as the torsion-free group. Here the concept of a quasibasis [3, 33.5] comes into the game.

Investigating mixed groups we recognized that the concept of a quasibasis was not developed far enough for our needs. In [4] the concept of a quasibasis was reduced to that of an inductive quasibases and p-groups are explicitly described by the corresponding diagonal relation arrays α. In particular, we showed that smallness of α is equivalent to splitting and independent diagonal relation arrays were shown to correspond uniquely to reduced, separable groups.

In this paper we determine a relation array of the generalized Prüfer group $\mathcal{H}_{2\omega+1}$, Theorem 4.3. We define a height of an inductive quasibasis and show that this is an invariant for related inductive quasibases, Theorem 5.8. Further, we define δ-combinations and characterize “separable” by the heights of δ-combinations, Theorem 6.3. Finally we establish a criterion for “nonreduced” in terms of heights, Theorem 6.6.

Our concept, for sure, needs additional development for promising applications in the theory of torsion groups. For more results see [5].

2. Preliminaries

We denote the ring of p-adic integers by \mathbb{Z}_p. As customary, define the p-adic norm of $\lambda \in \mathbb{Z}_p$ by $\|\lambda\| = p^{-n}$ if $\lambda \in p^n\mathbb{Z}_p \setminus p^{n+1}\mathbb{Z}_p$. Moreover, $\lambda = \sum_{i \in \mathbb{N}_0} \lambda_i p^i$ will denote the standard representation of a p-adic integer $\lambda \in \mathbb{Z}_p$.

We consider subgroups of $\prod_{|I|} \mathbb{Z}_p$, the additive group of all tuples $(\lambda_k | k \in I)$ of p-adic integers, where $\lambda_k \in \mathbb{Z}_p$, over some index set I. A tuple $0 \neq (\lambda_k | k \in I) \in \prod_{|I|} \mathbb{Z}_p$ is called a zero tuple if for every natural number n the norm of almost all λ_k is less than p^{-n}. A zero tuple is called normed, if there is at least one unit among the entries λ_k. The zero tuples (together with the trivial tuple 0) form a subgroup $\left(\prod_{|I|} \mathbb{Z}_p\right)^*$ of $\prod_{|I|} \mathbb{Z}_p$, which clearly contains $\bigoplus_{|I|} \mathbb{Z}_p$. Moreover, $(\prod_{|I|} \mathbb{Z}_p)^*/\bigoplus_{|I|} \mathbb{Z}_p$ is the maximal divisible subgroup of $\prod_{|I|} \mathbb{Z}_p/\bigoplus_{|I|} \mathbb{Z}_p$.

Proposition 2.1. Let $G = \bigoplus_{k \in I} \langle g_i^k | i \in \mathbb{N} \rangle \cong \bigoplus_{|I|} \mathbb{Z}(p^\infty)$, where $p \| g_i^k = 0$, $pg_i^k = g_i^k$ for all $k \in I$, $i \in \mathbb{N}$. Then $D = \langle h_i \in G | i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$ is a subgroup of G, where $ph_1 = 0$, $ph_{i+1} = h_i$ for all $i \in \mathbb{N}$, if and only if there is a normed zero tuple $(\lambda_k | k \in I)$, such that $h_i = \sum_{k \in I} \lambda_k g_i^k$ for all $i \in \mathbb{N}$.

Proof. For each $i \in \mathbb{N}$, the element $0 \neq h_i \in \bigoplus_{k \in I} \langle g_i^k | i \in \mathbb{N} \rangle$ can be written in the form $h_i = \sum_{k \in I} \lambda_i^k g_i^k$, where $0 \leq \lambda_i^k < p^i$, $\lambda_i^k = 0$ for almost all $k \in I$, and $p \| \lambda_i^k$ for at least one $k \in I$, by order considerations. Furthermore, we have for each $i \in \mathbb{N}$,

$$0 = h_i - ph_{i+1} = \sum_{k \in I} \lambda_i^k g_i^k - \sum_{k \in I} \lambda_{i+1}^k p g_i^k = \sum_{k \in I} (\lambda_i^k - \lambda_{i+1}^k) g_i^k.$$
Hence, \((\lambda_i^k - \lambda_{i+1}^k)g_i^k = 0\), i.e., \(p^i \mid (\lambda_i^k - \lambda_{i+1}^k)\) for all \(k \in I\). For each \(k \in I\) let

\[
\lambda_k = \lambda_i^k + \sum_{j \ge i} (\lambda_j^k - \lambda_j^k) \in \mathbb{Z}_p,
\]

where the equation holds for arbitrary \(i \in \mathbb{N}\).

For a fixed \(i \in \mathbb{N}\), \(p^i \mid \lambda_k\) for almost all \(k \in I\), because \(\lambda_i^k = 0\) for almost all \(k\). Therefore \((\lambda_k \mid k \in I)\) is a zero tuple. Moreover, \(p \mid \lambda_k\) for at least one \(k \in I\), because \(p \mid \lambda_i^k\) for at least one \(i \in \mathbb{N}\), i.e., \((\lambda_k \mid k \in I)\) is normed. In particular, \(\lambda_k g_i^k = \lambda_i^k g_i^k\). Thus \(h_i = \sum_{k \in I} \lambda_k g_i^k = \sum_{k \in I} \lambda_k g_i^k\) for all \(i \in \mathbb{N}\).

Conversely, let \((\lambda_k \mid k \in I)\) be a normed zero tuple and \(h_i = \sum_{k \in I} \lambda_k g_i^k\) for each \(i \in \mathbb{N}\). Note \(ph_i = \sum_{k \in I} p\lambda_k g_i^k = 0\) and

\[
ph_{i+1} = \sum_{k \in I} \lambda_k pg_i^{k+1} = \sum_{k \in I} \lambda_k g_i^k = h_i
\]

for all \(i \in \mathbb{N}\). In particular, the order \(o(h_i) = p^i\), because \((\lambda_k \mid k \in I)\) is a normed zero tuple. Hence, \(\langle h_i \rangle \cong \mathbb{Z}(p^\infty)\).

Following [4] the set

\[
Q = \{a_i^k, x_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_j\} \subset G
\]

is called a **quasibasis** of \(G\), if

(i) \(\{x_j^u \mid j \in \mathbb{N}, u \in I_j\}\) is a basis of the basic subgroup \(B = \bigoplus B_j\), where \(o(x_j^u) = p^i\) for all \(j \in \mathbb{N}, u \in I_j\);

(ii) \(G/B = \bigoplus_{k \in I} A^k\), where \(A^k = \langle a_i^k + B \mid i \in \mathbb{N}\rangle \cong \mathbb{Z}(p^\infty), k \in I, \) and \(pa_i^k + B = a_i^k + B\) for all \(i \in \mathbb{N}, k \in I\), with \(pa_1 + B = 0 + B\);

(iii) \(o(a_i^k) = p^i\) for all \(i \in \mathbb{N}, k \in I\).

Note that

\[
G = \langle a_i^k, x_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_j\rangle.
\]

By [3, 33.5] every \(p\)-group has a quasibasis with corresponding relations

\[
pa_i^{k+1} = a_i^k - \sum_{j \in \mathbb{N}, u \in I_j} \alpha_{i,j}^{k,u} x_j^u (i \in \mathbb{N}, k \in I, \alpha_{i,j}^{k,u} \in \mathbb{Z}).
\]

Given a quasibasis \(Q = \{a_i^k, x_j^u\}\) the array \(\alpha = (\alpha_{i,j}^{k,u})\) is called a **corresponding relation array**, \(B\) the **corresponding** basic subgroup. Note that we may also assume \(\alpha_{i,j}^{k,u} \in \mathbb{Z}_p\). For \(n \in \mathbb{N}\) let \(p^nQ = \{c_i^k, y_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_{j+n}\}\), where \(y_j^u = p^nx_j^{u+n}\) and \(c_i^k = p^n a_i^{k+n}\).
LEMMA 2.2. Let \(Q = \{a^k_i, x^n_j\} \) be a quasibasis of \(G \) with relation array \(\alpha = (\alpha_{i,j}^{k,u}) \). Then for any \(n \in \mathbb{N} \) the set \(p^n Q \) is a quasibasis of \(p^n G \) with corresponding array \((\alpha_{i+n,j+n}^{k,u}) \).

PROOF. Since \(p^n B = \bigoplus_{j \in \mathbb{N}} \bigoplus_{u \in I_{j+n}} (p^n x^n_{j+n}) \) is a basic subgroup of \(p^n G \) and \(o(p^n a^k_{i+n}) = p^i \), the conditions (i) and (iii) hold. Since \(p^n G/p^n B \cong G/B \cong \bigoplus_{|I|} \mathbb{Z}(p^\infty) \) condition (ii) follows. The relations

\[
p^{n+1} a^k_{i+n+1} = p^n a^k_{i+n} - \sum_{j \in \mathbb{N}} \sum_{u \in I_{j+n}} \alpha_{i+n,j+n}^{k,u} p^n x^n_{j+n}
\]

give rise to the indicated array. \(\square \)

3. Inductive Quasibases

A quasibasis \(\{a^k_i, x^n_j\} \) is called an inductive quasibasis, see [4], if the corresponding relations are of the form \(p a^k_{i+1} = a^k_i - b^k_i \) for \(i \in \mathbb{N}, k \in I \), where \(b^k_i \in B_i = \bigoplus_{u \in I} (x^n_u) \), cf. also [1]. Furthermore, a relation array \(\alpha = (\alpha_{i,j}^{k,u}) \) is called diagonal, if \(\alpha_{i,j}^{k,u} = 0 \) for \(i \neq j \). A diagonal array is denoted by \(\alpha = (\alpha_{i}^{k,u}) = (\alpha_{i,i}^{k,u}) \). By [4, Theorem 4 and Corollary 5], every \(p \)-group has an inductive quasibasis, and the corresponding relation array is diagonal. Note that an inductive quasibasis is based on a fixed decomposition \(B = \bigoplus B_i \) of the basic subgroup, and we write \(Q = \{a^k_i, \bigoplus B_i\} \) or \(Q = \{a^k_i, B\} \) to suppress the generators of the basic subgroup.

LEMMA 3.1. Let \(Q = \{a^k_i, \bigoplus B_i\} \) be an inductive quasibasis of \(G \) with corresponding relations \(p a^k_{i+1} = a^k_i - b^k_i \), \(i \in \mathbb{N}, k \in I \). Then \(p^n a^k_{i+n} = a^k_i - \sum_{r = 0}^{n-1} p^r b^k_{i+r} \) for all \(n \in \mathbb{N} \).

PROOF. We induct on \(n \). Clearly, \(p a^k_{i+1} = a^k_i - b^k_i \). By hypothesis

\[
p^{n+1} a^k_{i+n+1} = p^n a^k_{i+n} - p^n b^k_{i+n} = a^k_i - \sum_{r = 0}^{n-1} p^r b^k_{i+r} - p^n b^k_{i+n} = a^k_i - \sum_{r = 0}^{n} p^r b^k_{i+r}. \square
\]

Let \(G, H \) be groups with isomorphic basic subgroups \(B = \bigoplus B_i \subset G \) and \(C = \bigoplus C_i \subset H \), and \(G/B \cong H/C \), i.e., in particular, for all \(i, B_i \cong C_i \) are isomorphic homocyclic groups of exponent \(p^i \). Let, assuming equal index sets, the corresponding quasibases be \(Q = \{a^k_i, x^n_j\}, P = \{c^k_i, y^n_j\} \), and the corresponding relation arrays be \(\alpha = (\alpha_{i,j}^{k,u}), \beta = (\beta_{i,j}^{k,u}) \), respectively. Then the groups \(G, H \), the quasibases \(P, Q \) and the relation arrays \(\alpha, \beta \) are called related, respectively. In particular, if \(G = H \) and \(B = C \) we call the two quasibases \(Q = \{a^k_i, x^n_j\}, P = \{c^k_i, y^n_j\} \) and the two corresponding relation arrays \(\alpha, \beta \) of \(G \) related, respectively. The point for related relation arrays is that the respective index sets are equal. We tacitly assume this setting for those related pairs \(G, H \), or for a single group \(G \) with fixed basic subgroup \(B \).
Let $H = \varphi G$ with isomorphism φ, then by choice $C = \varphi B$ for some basic subgroup $B \subset G$ the groups G, H are related. In other words, related groups coincide in some invariants that are kept by isomorphism.

Otherwise, let G, H be related with related quasibases $Q = \{a_i^k, x^k_j\}, \{c_i^k, y^k_j\}$ and related relation arrays α, β. If there is another quasibasis P' of H such that the relation array β' corresponding to P' is equal to α, then $G \cong H$. This is a consequence of [4, Theorem 1], because the relations given by the relation array of a group are defining. Thus all results on changing the quasibasis, respectively changing the relation array, of a group include statements on isomorphism.

There is a strong relationship between two related inductive quasibases of a group.

Lemma 3.2. Let $Q = \{a_i^k, \bigoplus B_i\}$ and $P = \{c_i^k, \bigoplus B_i\}$ be related, inductive quasibases of G with corresponding relations $a_i^k - pa_i^{k+1} = b_i^k$ and $c_i^k - pc_i^{k+1} = d_i^k$. Then for each $k_0 \in I$ there is a normed zero tuple $(\lambda_k | k \in I)$ (depending on k_0), such that for all $n \in \mathbb{N}$,

$$d_i^{k_0} - \sum_{k \in I} \lambda_kb_i^k \in p^nB_i$$

for almost all $i \in \mathbb{N}$.

Proof. Since $G/B = \bigoplus_{k \in I} (a_i^k + B \mid i \in \mathbb{N}) = \bigoplus_{k \in I} (c_i^k + B \mid i \in \mathbb{N}) \cong \bigoplus_{\mid I \mid} \mathbb{Z}(p^\infty)$ by Proposition 2.1, there is, for a fixed $k_0 \in I$, a normed zero tuple $(\lambda_k | k \in I)$ (depending on k_0), such that $c_i^{k_0} = \sum_{k \in I} \lambda_k a_i^k + b_n, b_n \in B$ for all $n \in \mathbb{N}$. Hence for all $n \in \mathbb{N}$,

$$d_i^{k_0} - \sum_{k \in I} \lambda_kb_i^k = c_i^{k_0} - pc_i^{k_0} + \sum_{k \in I} \lambda_k(a_i^k - pa_i^{k+1}) = b_n - pb_{n+1} \in B_n,$$

because Q and P are inductive and related. The elements $b_n \in B$ are of the form $b_n = \sum_{i \in \mathbb{N}} b_{n,i}$, where $b_{n,i} \in B_i$. Thus for each $n \in \mathbb{N}$

$$b_n - pb_{n+1} = \sum_{i \in \mathbb{N}} (b_{n,i} - pb_{n+1,i}) \in B_n,$$

i.e., $b_{n,i} - pb_{n+1,i} = 0$ for all $i \in \mathbb{N}$ with $i \neq n$. Consequently, for all $n \in \mathbb{N}$,

$$b_{n,i} = pb_{n+1,i} = p^2b_{n+2,i} = ... = 0, \text{ if } i < n,$$

$$b_{n,i} = pb_{n+1,i} = p^2b_{n+2,i} = ... = p^{i-n}b_{i,i}, \text{ if } i \geq n,$$

and the first part of the following sum is 0, hence

$$b_n = b_{n,1} + ... + b_{n,n-1} + b_{n,n} + b_{n,n+1} + b_{n,n+2} + ...$$

$$= b_{n,n} + pb_{n+1,n+1} + p^2b_{n+2,n+2} + ... + p^rb_{n+r,n+r} + ...$$
This is a finite sum, thus we have the equality $p^r b_{n+r,n+r} = 0$ for all $n \in \mathbb{N}$, or $p^n \mid b_{n+r,n+r}$ for almost all $r \in \mathbb{N}_0$. This implies for all $n \in \mathbb{N}$,

$$
\sum_{k \in I} \lambda_k b_{n+r}^k = b_{n+r} - pb_{n+r+1}
$$

$$
= \sum_{m \in \mathbb{N}_0} p^m b_{n+r+m,n+r+m} - \sum_{m \in \mathbb{N}_0} p^{m+1} b_{n+r+m+1,n+r+m+1}
$$

$$
= b_{n+r,n+r} \in p^n \mathcal{B}_{n+r}
$$

for almost all $r \in \mathbb{N}_0$, as claimed. \(\square\)

Let $Q = \{a_i^k, x_j^u\}$ be an inductive quasibasis of G with corresponding relations

$$
(1) \quad a_i^k - pa_i^{k+1} = \sum_{u \in I_i} \alpha_{k,u}^i x_i^u = b_i^k \in B_i.
$$

We write the corresponding diagonal relation array $\alpha = (\alpha_i^k,u)$ in the following form

$$
(2) \quad \alpha = (\alpha_k)_{k \in I}, \quad \alpha^k = \text{diag}(\alpha_1^k, \alpha_2^k, \ldots) \quad \text{and} \quad \alpha_i^k = (\alpha_i^k,u)_{u \in I_i} \quad \text{with} \ i \in \mathbb{N}, \ \alpha_i^k,u \in \mathbb{Z},
$$

where $\alpha_i^k \in \mathbb{Z}^{\mid I_i \mid}$ is a tuple, with only finitely many nonzero entries, and α can be considered as a tuple of (infinite) diagonal matrices α^k.

Two related diagonal relation arrays $\alpha = (\alpha_i^k,u)$ and $\beta = (\beta_i^k,u)$, i.e., with equal index sets, are called almost equal, if for each k the equation $\alpha_i^k = \beta_i^k$ holds for almost all $i \in \mathbb{N}$.

The following proposition shows that a group allows a whole class of almost equal relation arrays, and, moreover, that almost equal relation arrays of groups imply isomorphism.

Proposition 3.3. Let $Q = \{a_i^k, x_j^u\}$ be an inductive quasibasis of G with relation array $\alpha = (\alpha_i^k,u)$ and let β be an array almost equal to α. Then there is an inductive quasisbasis $P = \{c_i^k, x_j^u\}$ of G with relation array β and $c_i^k = a_i^k$ for each $k \in I$, and for almost all $i \in \mathbb{N}$.

Related groups G, H with almost equal (related) relation arrays are isomorphic.

Proof. Since α and β are almost equal we need to show that we can make finitely many changes for each k. Thus it suffices to construct a new inductive quasibasis P of G which differs from Q only for one fixed k and a fixed i_k. Let $\beta = (\beta_i^k)$ be given by

$$
\beta_i^k = \begin{cases}
(\alpha_i^k,u)_{u \in I_i}, & \text{if } i \neq i_k \\
(z_i^k,u)_{u \in I_i}, & \text{if } i = i_k
\end{cases}
$$
where \((z^{k,u} \mid u \in I_k) \in \mathbb{Z}^{I_k}\) is an arbitrary tuple with only finitely many nonzero entries. We show that \(P = \{c^k_i, x^u_j \mid i, j \in \mathbb{N}, k \in I, u \in I_j\} \subset G\) with

\[
\ell^k_i = \begin{cases} a^k_i + p^i k-i \sum_{u \in I_k} (z^{k,u} - \alpha^{k,u}_{ik})x^u_i, & \text{if } i \leq i_k \\ 0, & \text{if } i > i_k \end{cases}
\]

for all \(k \in I\), is an inductive quasibasis of \(G\). The conditions (i) and (iii) of the definition of a quasibasis are obviously satisfied. Since \(c^k + B = a^k + B\) for all \(k \in I, i \in \mathbb{N}\), condition (ii) is also satisfied. Furthermore, for all \(k \in I\),

\[
p_{c_{i+1}}^k = p(a^k_{i+1} + p^{i-k-i-1} \sum_{u \in I_k} (z^{k,u} - \alpha^{k,u}_{ik})x^u_i)
\]

\[
= a^k_i - \sum_{u \in I_k} \alpha^{k,u}_{ik}x^u_i + p^{i-k-i} \sum_{u \in I_k} (z^{k,u} - \alpha^{k,u}_{ik})x^u_i = c_i^k - \sum_{u \in I_i} \alpha^{k,u}_{i}x^u_i, \text{ if } i < i_k,
\]

\[
p^k_{a_{i+1}}^k = p^k_{a_{i+1}} = a^k_k - \sum_{u \in I_k} \alpha^{k,u}_{ik}x^u_k
\]

\[
= c_k^k - \sum_{u \in I_k} (z^{k,u} - \alpha^{k,u}_{ik})x^u_k - \sum_{u \in I_k} \alpha^{k,u}_{ik}x^u_k = c_k^k - \sum_{u \in I_k} z^{k,u}x^u_k,
\]

\[
p_{c_{i+1}}^k = p\sum_{u \in I_i} a^k_i - \sum_{u \in I_i} \alpha^{k,u}_{i}x^u_i = c_i^k - \sum_{u \in I_i} \alpha^{k,u}_{i}x^u_i, \text{ if } i > i_k.
\]

Hence \(\beta\) is the desired relation array.

By the argument above and because relation arrays provide defining relations, see [4, Theorem 1], the groups \(G, H\) are isomorphic.

4. Construction of a Quasibasis for \(H_{2\omega+1}\)

Well known examples for nonseparable reduced \(p\)-groups are the generalized Prüfer groups \(H_{\sigma}\) for ordinals \(\sigma\). For a definition see [3, Section 81]. By [3, 83.1] all generalized Prüfer groups are simply presented.

In [4] for the generalized Prüfer group \(H_{\omega+n}\) of length \(\omega + n\) for natural \(n\) an inductive quasibasis was given with a corresponding relation array. Our next goal is to determine an inductive quasibasis of the generalized Prüfer group \(H_{2\omega+1}\) of length \(2\omega + 1\). Note that the Ulm-Kaplansky-invariants of \(H_{2\omega+1}\) are

\[
f_{\sigma}(H_{2\omega+1}) = \begin{cases} \mathbb{N}_0, & \text{for } 0 \leq \sigma < \omega, \\ 1, & \text{for } \omega \leq \sigma \leq 2\omega. \end{cases}
\]

We construct a simply presented group \(G\) that has the same Ulm-Kaplansky-invariants as \(H_{2\omega+1}\). Hence \(G \cong H_{2\omega+1}\), because simply presented groups with equal Ulm-Kaplansky-invariants are
isomorphic, see [3, 83.3]. Further we use the presentation of this group G to obtain an inductive quasibasis.

We begin by developing some notation. Let $H = \langle h_0^0 \rangle \oplus \bigoplus_{k \in \mathbb{N}, i \in \mathbb{N}_0} \langle h_i^k \rangle$ be a free abelian group and $L = \langle p g_0^0, p^k g_0^k - h_0^0, p^i h_0^k - h_0^k | i, k \in \mathbb{N} \rangle$ a subgroup of H. We denote $G = H/L = \langle g_0^0, g_i^k | k \in \mathbb{N}, i \in \mathbb{N}_0 \rangle$ with $g_0^0 = h_0^0 + L$ and $g_i^k = h_i^k + L$. The group G is given by the relations

\[pg_0^0 = 0, p^k g_i^k = g_0^0 \text{ and } p^i g_i^k = g_0^k \text{ for } i, k \in \mathbb{N}. \]

In particular, G is simply presented. It is straightforward to show that the following hold for the groups L and G as described above.

(i) Every $l \in L$ has the form $l = \lambda_0^0 h_0^0 + \sum_{k \in \mathbb{N}, i \in \mathbb{N}_0} \lambda_i^k h_i^k$, where $\lambda_i^k \in p^i \mathbb{Z}$ for $i, k \in \mathbb{N}$. Moreover, $h_0^0 \not\in L$ and for $l = \sum_{k \in \mathbb{N}} \lambda_i^k h_i^k$, $\lambda_0^k \in p^k \mathbb{Z}$ for all $k \in \mathbb{N}$.

(ii) For $r \in \mathbb{N}$ each $g \in p^r G$ has the form $g = \sum_{k \in \mathbb{N}} (m_0^k g_0^k + \sum_{i > r} \mu_i^k g_i^k)$ with $\mu_0^k \in \mathbb{Z}$ and $\lambda_i^k \in p^i \mathbb{Z}$ for $i > r$.

We determine a basic subgroup of G and construct an inductive quasibasis. Let $x_i^k = g_i^k - pg_{i+1}^k \in G$ for all $i, k \in \mathbb{N}$ and let $B = \langle x_i^k | k, i \in \mathbb{N} \rangle$.

Lemma 4.1. The subgroup B of G defined above is a direct sum, $B = \bigoplus_{i,k \in \mathbb{N}} \langle x_i^k \rangle$, with $o(x_i^k) = p^i$ for all $i, k \in \mathbb{N}$. Moreover, B is a basic subgroup of G.

Proof. Similar to the arguments for the generalized Prüfer group $\mathcal{H}_{\omega+1}$, see [3, Section 35, Example], it is easy to verify that $\{ x_i^k | k, i \in \mathbb{N} \}$ is a p-independent system of G with each $b \in B$ of the form $b = \sum_{i,k \in \mathbb{N}} \lambda_i^k x_i^k = \sum_{i,k \in \mathbb{N}} (\lambda_i^k - p \lambda_i^{k-1}) g_i^k$, where $0 \leq \lambda_i^k < p^i$ and agreeing $\lambda_0^k = 0$. Moreover, G/B is divisible with a decomposition into the $\mathbb{Z}(p^\infty)$ summands given by $\langle \bar{g}_i^1 | i \in \mathbb{N}_0 \rangle$ and $\langle p^{k-1} \bar{g}_i^k - p^{k+1} \bar{g}_i^k | i \in \mathbb{N}_0 \rangle$ for $k \in \mathbb{N}$ and where $\bar{g} = g + B$. \qed

Lemma 4.2. $G \cong \mathcal{H}_{2\omega+1}$.

Proof. Since $B = \bigoplus_{i,k \in \mathbb{N}} \langle x_i^k \rangle$ and $p^r G = \langle g_0^0, g_i^k | pg_0^0 = 0, p^k g_0^k = g_0^k, p^i g_i^k = g_0^k | k \in \mathbb{N} \rangle$, we have $p^r G = \mathcal{H}_{\omega+1}$, see [3, Section 83, Example 3]. So the the Ulm-Kaplansky invariants of the simply presented group G are equal to those of $\mathcal{H}_{2\omega+1}$. Thus $G \cong \mathcal{H}_{2\omega+1}$ by the consideration above. \qed

Now we use the presentation of G to obtain an inductive quasibasis of $\mathcal{H}_{2\omega+1}$. In Lemma 4.1 we defined B, the basic subgroup of G, by $B = \bigoplus_{i,k \in \mathbb{N}} \langle x_i^k \rangle$. This shows that condition (i) of an inductive quasibasis holds. Now we show conditions (ii) and (iii). Define the generators a_i^k as follows $a_i^0 = p^2 g_i^1$ and $a_i^k = -p^k g_i^k + p^{k+1} g_i^{k+1}$ for $i, k \in \mathbb{N}$. In particular, $a_i^0 - pa_{i+1}^0 = p^2 g_i^1 - p^3 g_{i+1}^1 = p^2 x_i^1 \in B_i$ and for all $i, k \in \mathbb{N}$

\[a_i^k - pa_{i+1}^k = -p^k g_i^k + p^{k+1} g_i^{k+1} + p^{k+1} g_{i+1}^k - p^{k+2} g_{i+1}^{k+1} = -p^k x_i^k + p^{k+1} x_{i+1}^{k+1} \in B_i. \]
Define A^k by $A^k = \langle a^k_i + B \mid i \in \mathbb{N} \rangle \subseteq G/B$ for all $k \in \mathbb{N}_0$. Note that the subgroups A^k are precisely the $\mathbb{Z}(p^\infty)$ summands given in Lemma 4.1 by the generators $(g^1_i \mid i \in \mathbb{N}_0)$ and $(p^{k-1}g^1_i - p^k g^{k+1}_i \mid i \in \mathbb{N}_0)$. Hence condition (ii) holds. Finally we show condition (iii), that $o(a_i^k) = p^s$. This follows from $p^s a_i^0 = p^{s+2} g^1_i = p^s g^{k+1}_i = 0$, $p^s a_i^k = p^{s}(-p^k g^{k+1}_i + p^{k+1} g^{k+2}_i) = -p^k g^{k+1}_i + p^{k+1} g^{k+2}_i = -g^{k+1}_i + g^{k+2}_i = 0$ and the defining relations for the groups G and L. We summarize the above results in the following theorem.

Theorem 4.3. $Q = \{a_i^k, x_i^k \mid i \in \mathbb{N}, k \in \mathbb{N}_0\}$ with a_i^k and x_i^k as defined above is an inductive quasibasis of $G = \mathcal{H}_{2\omega+1}$ with the corresponding relation array $\alpha^k = \text{diag}(\alpha_i^k, \alpha_i^k, \ldots)$, where $\alpha_i^0 = (p^2, 0, \ldots)$ and $\alpha_i^k = (0, \ldots, 0, -p^k, p^{k+1}, 0, \ldots)$ for all $i, k \in \mathbb{N}$.

5. Invariance of Height for Quasibases

Let $B = \bigoplus_{i \in \mathbb{N}} B_i$ be a basic subgroup of G, and let $B^\Pi = \prod_{i \in \mathbb{N}} B_i$. The elements $\delta \in B^\Pi$ are written in the form $\delta = (b_1, b_2, \ldots)$, where $b_i \in B_i$ for all $i \in \mathbb{N}$. Let $h(\delta)$ denote the height of $\delta = \delta + B$ in B^Π/B. If $h^B(b_i)$ denotes the height of b_i in B then it is easy to see that $h(\delta) = \liminf_{i \to \infty} (h^B(b_i))$. Note that $h^B(b_i) = \infty$ if and only if $b_i = 0$ and $h^B(b_i) \in \{0, 1, \ldots, i-1\}$ for $b_i \neq 0$.

Let $B^\Pi_0 = \{\delta \in B^\Pi \mid h(\delta) = 0\}$. Note that $B^\Pi_0 = \bar{B}$, the completion of B in the p-adic topology, cf. also [2]. Then $B \subseteq B^\Pi_0 \subseteq B^\Pi$ and B^Π_0/B is the first Ulm subgroup of B^Π/B. Clearly, $\delta = (b_i \mid i) \in B^\Pi_0$ if and only if $\lim_{i \to \infty} (h^B(b_i)) = \infty$.

Lemma 5.1. $B^\Pi_0/B = p^\omega(B^\Pi/B)$ is the maximal divisible subgroup of B^Π/B. In particular, $h(\delta) \in \mathbb{N}_0 \cup \{\infty\}$ for $\delta \in B^\Pi/B$. Moreover, $\text{tor}(B^\Pi/B) \subseteq B^\Pi_0/B$.

Proof. We show that B^Π_0/B is divisible. If $\delta = (b_i \mid i)$ and $\delta + B \in B^\Pi_0/B$, then there is a $j \in \mathbb{N}$ such that $h(b_i) \geq 1$ for all $i \geq j$, i.e., $\delta + B = (pc_i \mid i) + B = p(c_i \mid i) + B$, where $b_i = pc_i$ for all $i \geq j$. Consequently $B^\Pi_0/B = p(B^\Pi_0/B)$, as desired. In particular, $h(\delta) \in \mathbb{N}_0 \cup \{\infty\}$ for $\delta \in B^\Pi/B$. Moreover, it follows from $i = h(b_i) + n_i$, if the element $b_i \in B_i$ is of order p^{n_i}, that the torsion subgroup of B^Π/B is contained in B^Π_0/B. \[\square \]

Recall the following rules for heights [3, Section 37].

Lemma 5.2. The following hold for $\delta, \delta_1, \delta_2 \in B^\Pi$ and $\lambda \in \mathbb{Z}_p$ with $\|\lambda\| = p^{-n}$.

(i) $h(\delta_1 + \delta_2) \geq \min\{h(\delta_1), h(\delta_2)\}$,

(ii) $h(\delta_1 + \delta_2) = h(\delta_1)$, if $h(\delta_1) < h(\delta_2)$,

(iii) $h(\lambda \delta) = h(\delta) + n$.

Proof. (i) and (ii) are obvious, cf. [3, Section 37]. Condition (iii) follows from $h(\lambda \overline{d}) = h(p^a \lambda \overline{d}) = h(\lambda \overline{d}) + n = h(\overline{d}) + n$, where $\lambda' \in \mathbb{Z}_p \setminus p\mathbb{Z}_p$ with $\lambda = p^a \lambda'$. \hfill \square

Notation 5.3. Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G with corresponding relations $a_i^k - p a_{i+1}^k = b_i^k \in B_i$. Define $\delta^k = \delta^k(Q) = (b_1^k, b_2^k, \ldots) \in B^{\Pi}$, then the Q-tuple $\Delta(Q) = (\delta^k(Q) \mid k \in I)$ describes the corresponding relations of G. An important property of these relations can be formulated by the height function h given by $h(Q) = \min\{h(\delta^k(Q)) \mid k \in I\} \in \mathbb{N}_0 \cup \{\infty\}$. We will refer to it as the height of Q in G. For a zero tuple $(\lambda_k \mid k \in I) \neq 0$ and the Q-tuple $\Delta(Q)$ we define the sum $\delta = \sum_{k \in I} \lambda_k \delta^k(Q) = (\sum_{k \in I} \lambda_k b_i^k \mid i \in \mathbb{N}) \in B^{\Pi}$ and call it a Q-combination. Note that δ is a well defined element of B^{Π}, because the sum in each component is finite. A Q-combination is called normed if the zero tuple $(\lambda_k \mid k \in I)$ is normed.

If $\alpha = (\alpha_i^k,u)$ is the diagonal relation array corresponding to the inductive quasibasis Q, then we write the relation array as in the Equations (1) and (2). Thus

$$
\delta^k(Q) = (b_1^k, b_2^k, \ldots) = \left(\sum_{\alpha \in I_i} \alpha_i^k, u x_i^k \mid i \in \mathbb{N}\right),
$$

and $\Delta(Q) = (\delta^k \mid k)$ is the Q-tuple. In particular, the heights $h(\delta^k(Q))$ are precisely determined by the p-powers dividing the entries α_i^k,u. Hence also $h(Q) = \min\{h(\delta^k(Q)) \mid k \in I\}$ can be read off the entries α_i^k,u.

We now determine the heights of some quasibases that have been studied previously.

Example 5.4. Let $Q = \{a_i^k, x_i^k\}$ where $|I| = |I_i| = 1$ for all $i \in \mathbb{N}$, i.e., $B = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}(p^i)$, and $G/B \cong \mathbb{Z}(p^\infty)$. Thus $\Delta(Q) = (b_1^1, b_2^1, \ldots)$, i.e., $h(Q) = \liminf_{i \to \infty}(h^B(b_i))$. We now give the heights of three quasibases that appeared in [4, Section 2 and 5] together with their relation arrays.

$$
\begin{align*}
H_{\omega+1} : \quad & \alpha = \text{diag}(p^n, p^n, \ldots), \quad \delta = (x_1, p^n x_2, \ldots), \quad h(\overline{d}) = n. \\
B : \quad & \alpha = \text{diag}(1, 0, 1, 0, \ldots), \quad \delta = (x_1, 0, x_3, 0, \ldots), \quad h(\overline{d}) = 1. \\
\mathbb{Z}(p^\infty) \oplus B : \quad & \alpha = \text{diag}(1, p, p^2, p^3, \ldots), \quad \delta = (x_1, px_2, p^2 x_3, \ldots), \quad h(\overline{d}) = \infty.
\end{align*}
$$

In the next example we consider the generalized Prüfer group $G \cong \mathcal{H}_{2\omega+1}$ and determine the Q-tuple $\Delta(Q)$, the heights $h(\delta^k(Q))$, and the height $h(Q)$ of the quasibasis $Q = \{a_i^k, x_i^k\}$ for the generalized Prüfer group $\mathcal{H}_{2\omega+1}$.

Example 5.5. By Theorem 4.3 the generalized Prüfer group $\mathcal{H}_{2\omega+1}$ has the quasibasis $Q = \{a_i^k, x_i^k \mid i \in \mathbb{N}, k \in \mathbb{N}_0\}$ and the corresponding relation array is $\alpha = (\alpha^k)_{k \in I}$ with $\alpha^k = \text{diag}(\alpha_i^k, \alpha_i^k, \ldots)$, where

$$
\begin{align*}
\alpha_i^0 = (p^2, 0, \ldots) \quad \text{and} \quad \alpha_i^k = (0, \ldots, 0, -p^k, p^{k+1}, 0, \ldots) \quad \text{for all} \quad i, k \in \mathbb{N}.
\end{align*}
$$
Thus

\[\Delta(Q) = (\delta^k \mid k \in \mathbb{N}_0), \] where \(\delta^0 = (p^2 x_i^1 \mid i) \) and \(\delta^k = (-p^k(x_i^k - px_i^{k+1}) \mid i) \) for \(k \in \mathbb{N} \).

So the heights of the \(\tilde{\delta}^k \) are \(h(\delta^0) = 2 \) and \(h(\delta^k) = k \) for \(k \in \mathbb{N} \), hence \(h(Q) = h(\tilde{\delta}^1) = 1 \).

Our next objective is to show that the height is invariant for related inductive quasibases. Let \(Q \) be a quasibasis of a group \(G \) with \(Q \)-tuple \(\Delta(Q) = (\delta^k(Q) \mid k) \). We begin with Proposition 5.6 by showing that for some fixed \(k_0 \in I \) we may switch to a related quasibasis of \(G \) such that only the entry \(\delta^{k_0}(Q) \) is changed and this in a quite arbitrary way.

Proposition 5.6. Let \(Q = \{a_i^k, \bigoplus B_i\} \) be an inductive quasibasis of \(G \) with \(Q \)-tuple \(\Delta(Q) = (\delta^k(Q) \mid k) \). Let \(k_0 \in I \) be fixed and let \(\delta = \sum_{k \in I} \lambda_k \delta^k(Q) \) be a (normed) \(Q \)-combination with \(p \mid \lambda_{k_0} \). Then there is an inductive quasibasis \(P = \{c_i^k, \bigoplus B_i\} \) of \(G \), related to \(Q \), with \(P \)-tuple \(\Delta(P) = (\delta^k(P) \mid k) \) such that

\[
\delta^k(P) = \begin{cases}
\delta, & \text{if } k = k_0, \\
\delta^k(Q), & \text{if } k \neq k_0.
\end{cases}
\]

Proof. For

\[
c_i^k = \begin{cases}
\sum_{l \in I} \lambda_l a_i^l, & \text{if } k = k_0, \\
 a_i^k, & \text{if } k \neq k_0,
\end{cases}
\]

we show that \(P = \{c_i^k, \bigoplus B_i\} \) is an inductive quasibasis of \(G \). The conditions (i) and (iii) in the definition are obvious and it remains to show (ii). Since \(\lambda_{k_0} a_i^{k_0} = c_i^{k_0} - \sum_{k \in I \setminus \{k_0\}} \lambda_k c_i^k \in (c_i^k \mid k \in I, i \in \mathbb{N}) \) and \(p \mid \lambda_{k_0} \), we get \(\langle a_i^k \mid k \in I, i \in \mathbb{N} \rangle = \langle c_i^k \mid k \in I, i \in \mathbb{N} \rangle \). Hence

\[
G/B = \bigoplus_{k \in I} \langle a_i^k + B \mid i \in \mathbb{N} \rangle = \sum_{k \in I} \langle c_i^k + B \mid i \in \mathbb{N} \rangle.
\]

Define \(C^k = \langle c_i^k + B \mid i \in \mathbb{N} \rangle \). We now prove that \(\sum_{k \in I} C^k \) is a direct sum. Since \(C^k \cong \mathbb{Z}(p^\infty) \) for all \(k \in I \), we may write an arbitrary element \(c \in \sum_{k \in I} C^k \) in the form \(c = \sum_{k \in I} \mu_k c_i^k + B \), \(\mu_k \in \mathbb{Z} \) for some \(i \in \mathbb{N} \). Then

\[
c = \sum_{l \in I} \mu_{k_0} a_l^l + \sum_{k \in I \setminus \{k_0\}} \mu_k a_i^k + B = \mu_{k_0} a_i^{k_0} + \sum_{k \in I \setminus \{k_0\}} (\mu_{k_0} \lambda_k + \mu_k) a_i^k + B.
\]

If \(c = 0 \in G/B \), then \(p^j \mid \mu_{k_0} \lambda_k \) and \(p^j \mid (\mu_{k_0} \lambda_k + \mu_k) \) for all \(k \in I \setminus \{k_0\} \), because \(Q \) is a quasibasis. Thus, \(p^j \mid \mu_k \) for all \(k \in I \), because \(p \nmid \lambda_{k_0} \). This shows that \(c = 0 \in G/B \) implies
Thus, \(\mu_k c_i^k \in B \), and the sum \(\sum_{k \in I} C^k \) is direct. Consequently, \(P \) is a quasibasis of \(G \). Moreover, it is inductive, because \(c_i^k - pc_{i+1}^k \in B_i \) for all \(k \in I \).

In particular, \(\delta^k (P) = \delta^k (Q) \) for \(k \neq k_0 \), and

\[
\delta^{k_0} (P) = \left(c_i^{k_0} - pc_{i+1}^{k_0} \mid i \in \mathbb{N} \right) = \left(\sum_{i \in I} \lambda_i a_i^k - p \sum_{i \in I} \lambda_i a_i^{k+1} \mid i \in \mathbb{N} \right) = \left(\sum_{i \in I} \lambda_i b_i^k \mid i \in \mathbb{N} \right) = \sum_{k \in I} \lambda_k \delta^k (Q) = \delta.
\]

An inductive quasibasis \(Q \) of \(G \) is called \textit{normed}, if \(h(\delta^k) = h(Q) \) for every \(k \in I \). Now we show that the group \(G \) has a normed, related inductive quasibasis \(P \) with \(h(P) = h(Q) \).

Lemma 5.7. For every inductive quasibasis \(Q \) of \(G \) there is a normed, related inductive quasibasis \(P \) of \(G \) with \(h(P) = h(Q) \).

Proof. Let \(Q = \{ a_i^k, \bigoplus B_i \mid k \in I \} \) be an inductive quasibasis of \(G \). Recall the notation in Equation (1). Let \(\hat{\delta}^k = \delta^k (Q) \) for all \(k \in I \). To construct \(P \), we choose some \(k_0 \in I \) with \(h(\hat{\delta}^{k_0}) = h(Q) \) and define the subset \(J = \{ k \in I \mid h(\hat{\delta}^k) \neq h(Q) \} \subset I \). We use the idea of Proposition 5.6 and show that \(P = \{ c_i^k, \bigoplus B_i \} \) with

\[
c_i^k = \begin{cases} a_i^k, & \text{for } k \in I \setminus J, \\ a_i^k + a_i^{k_0}, & \text{for } k \in J, \end{cases}
\]

is a normed, related inductive quasibasis of \(G \) with \(h(P) = h(Q) \). The set \(P \) clearly satisfies the conditions (i) and (iii) of the definition. Condition (ii) is also satisfied from the following. Note that for \(k \in J \)

\[
c_i^k - pc_{i+1}^k = a_i^k - pa_{i+1}^k + a_i^{k_0} - pa_{i+1}^{k_0} = b_i^k + b_i^{k_0} \in B_i.
\]

Thus

\[
\bigoplus_{k \in I} (c_i^k + B \mid i \in \mathbb{N}) = \left(\bigoplus_{k \in J} (a_i^k + a_i^{k_0} + B \mid i \in \mathbb{N}) \right) \oplus \left(\bigoplus_{k \in I \setminus J} (a_i^k + B \mid i \in \mathbb{N}) \right)
\]

\[
= \bigoplus_{k \in I} (a_i^k + B \mid i \in \mathbb{N}).
\]

Hence, \(P \) is an inductive quasibasis of \(G \) which is related to \(Q \) and given by

\[
\delta^k (P) = \begin{cases} \delta^k, & \text{for } k \in I \setminus J, \\ \delta^k + \delta^{k_0}, & \text{for } k \in J. \end{cases}
\]

By Lemma 5.2,

\[
h(\hat{\delta}^k (P)) = h(\hat{\delta}^k + \hat{\delta}^{k_0}) = h(\hat{\delta}^{k_0}) = h(Q)
\]
for all \(k \in J \), because \(h(\delta^{k_0}) < h(\delta^k) \). Thus \(h(\delta^k) = h(Q) \) for all \(k \in I \) and hence, \(P \) is normed with \(h(P) = h(Q) \).

We are now ready to prove the main result in this section on the invariance of height for related inductive quasibases.

Theorem 5.8. Related inductive quasibases of \(G \) have the same height.

Proof. By Lemma 5.7 it suffices to show that \(h(Q) = h(P) \) for two normed, related inductive quasibases \(Q = \{a_i^*, \bigoplus B_i\} \) and \(P = \{c_i^*, \bigoplus B_i\} \) of \(G \). Assume \(h(Q) > h(P) \) and let \(h = h(P) \). Also, let \(b_i^k = a_i^k - p^k_i t_i + 1 \) and \(d_i^k = c_i^k - p^k_i t_i + 1 \) for all \(i \in \mathbb{N}, k \in I \). By Lemma 3.2, let \(k_0 \in I \) and let \((\lambda_k \mid k \in I) \) be a normed zero tuple such that

\[
\delta_k^k - \sum_{k \in I} \lambda_k b_i^k \in p^n B_i,
\]

for each \(n \in \mathbb{N} \) and almost all \(i \in \mathbb{N} \). Let \(\delta_k^{k_0} = \delta_k^{k_0}(P) = (d_i^{k_0} \mid i \in \mathbb{N}) \) and \(\delta = \sum_{k \in I} \lambda_k \delta_k^k(Q) = (\sum_{k \in I} \lambda_k b_i^k \mid i \in \mathbb{N}) \). From (3) it follows that \(h(\delta_k^{k_0} - \delta) = \infty \). By Lemma 5.2 we get

\[
h(\delta) = h(\delta_k^{k_0}) = h.
\]

Thus the set \(J = \{k \in I \mid p^{k+1} \mid \lambda_k\} \) must be finite and nonempty. Write \(\delta = \delta_1 + \delta_2 \) where \(\delta_1 = \sum_{k \in J} \lambda_k \delta_k^k(Q) \) and \(\delta_2 = \sum_{k \in I \setminus J} \lambda_k \delta_k^k(Q) \). Thus,

\[
h(\delta) = h(\delta_1 + \delta_2) = \min\{h(\delta_1), h(\delta_2)\} > h,
\]

because of \(h(\lambda_k \delta_k(Q)) \geq h(\delta_k^k(Q)) = h(Q) > h \) for all \(k \in J \). On the other hand \(h(\delta_2) > h \), because \(\delta_2 \in p^{k+1} B_i \). Moreover, \(h(\delta_1), h(\delta_2) > h \), and

\[
h = h(\delta) = h(\delta_1 + \delta_2) = \min\{h(\delta_1), h(\delta_2)\} > h,
\]

a contradiction. Hence, \(h(Q) = h(P) \).

6. Quasibases of Reduced Groups

In this section we characterize separable and nonreduced groups in terms of the height of an inductive quasibasis. We begin with a lemma which describes the Ulm subgroup.

Lemma 6.1. Let \(Q = \{a_i^*, \bigoplus B_i\} \) be an inductive quasibasis of \(G \). Let \(0 \neq g \in G \) be of order \(p^j \). Then \(g \in p^i G \) if and only if there is a normed zero tuple \((\lambda_k \mid k \in I) \), such that \(g = \sum_{k \in I} \lambda_k a_i^k + b, b \in B \), and there is a natural number \(n \) such that

\[
g = p^n \sum_{k \in I} \lambda_k a_{j+n}^k = p^{n+1} \sum_{k \in I} \lambda_k a_{j+n+1}^k = p^{n+2} \sum_{k \in I} \lambda_k a_{j+n+2}^k = ...
\]

In particular, \(h(\sum_{k \in I} \lambda_k \delta_k) \geq j \).
PROOF. Since $G/B = \bigoplus_{k \in I} (\lambda k^n + B \mid k \in I) \cong \bigoplus_{i \in \mathbb{N}} \mathbb{Z}(p^\infty)$, there is, by Proposition 2.1, a normed zero tuple $(\lambda_k \mid k \in I)$ such that $g \in \sum_{k \in I} \lambda_k a^k_j + B$ and the set $\{\sum_{k \in I} \lambda_k a^k_j + B \mid i \in \mathbb{N}\}$ generates a $\mathbb{Z}(p^\infty)$. Now let $g = \sum_{k \in I} \lambda_k a^k_j + b \in p^nG$ with $b \in \bigoplus_{i < l} B_i$ for some $l \in \mathbb{N}$. Then by Lemma 3.1

$$g = \sum_{k \in I} \lambda_k a^k_j + b = \sum_{k \in I} \lambda_k \left(p^n a^k_{j+n} + \sum_{r=0}^{n-1} p^r b^k_{j+r} \right) + b \in p^nG,$$

for all $n \in \mathbb{N}$. Hence for all $n \geq l$

$$g - p^n \sum_{k \in I} \lambda_k a^k_{j+n} = \sum_{r=0}^{n-1} \sum_{k \in I} \lambda_k p^r b^k_{j+r} + b = \sum_{r=j}^{n+j-1} \sum_{k \in I} \lambda_k p^{r-j} b^k_r + b = \sum_{r=j}^{l-1} \sum_{k \in I} \lambda_k p^{r-j} b^k_r + b + \sum_{r=j}^{n+j-1} \sum_{k \in I} \lambda_k p^{r-j} b^k_r \in p^nB.$$

Let $b_r = \sum_{k \in I} \lambda_k p^{r-j} b^k_r \in B_r$. In view of height and order considerations we conclude that $\sum_{r=j}^{l-1} b_r + b = 0$. Thus $\sum_{r=j}^{n+j-1} b_r \in p^nB$ for all $n \geq l$, i.e., $b_r = 0$ for all $r \geq l$. It follows that $g = p^n \sum_{k \in I} \lambda_k a^k_{j+n}$ for all $n \geq l$. Consequently $g \in p^nG$ has the indicated form. Moreover, $b_r = \sum_{k \in I} \lambda_k p^{r-j} b^k_r = 0$ implies that $p^j \mid \sum_{k \in I} \lambda_k b^k_r$, for all $r \geq l$, and $h(\sum_{k \in I} \lambda_k 3^k) \geq j$. \hfill \qed

COROLLARY 6.2. Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G. If $j > h(\delta_{\lambda_0})$, then $a_j^{k_0} \notin p^nG$.

PROOF. If $a_j^{k_0} \in p^nG$, then by Lemma 6.1 there is a normed zero tuple $(\lambda_k \mid k \in I)$, such that $a_j^{k_0} = \sum_{k \in I} \lambda_k a^k_j + b$ and $a_j^{k_0} = p^n \sum_{k \in I} \lambda_k a^k_{j+n}$ for all j. Thus $b = 0$, $p^j \mid \lambda_k$ for all $k \neq k_0$, and consequently $a_j^{k_0} = p^n a^k_{j+n}$ for all n.

Now, let $j > h = h(\delta_{\lambda_0})$. So there are infinitely many $i \in \mathbb{N}$ where $p^{h+1} \mid b_i^{k_0} = a_i^{k_0} - pa_i^{k_0} \in B_{j+n}$. Hence we may select an n with $p^{h+1} \mid b_i^{k_0}$ for all j. We assume $a_j^{k_0} \in p^nG$ and apply Lemma 3.1, i.e.,

$$\sum_{r=0}^{n} p^r b_{j+r}^{k_0} = a_j^{k_0} - p^{n+1} a_{j+n+1}^{k_0} = 0.$$

Using $B = \bigoplus B_i$, we get $p^r b_{j+r}^{k_0} = 0$ for all $0 \leq r \leq n$. In particular, $p^n b_{j+n}^{k_0} = 0$ implies $p^j \mid b_{j+n}^{k_0}$. But $j > h$ further implies that $p^{h+1} \mid b_{j+n}^{k_0}$, a contradiction. Thus $a_j^{k_0} \notin p^nG$. \hfill \qed

Our next theorem describes separable groups in terms of the height of a quasibasis.

THEOREM 6.3. Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of the reduced group G. Then G is separable if and only if $h(\delta) = 0$ for all Q-combinations δ.

PROOF. Suppose G is separable and let $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ be a Q-combination. If $h(\delta) > 0$, then there is a $j \in \mathbb{N}$, such that $\sum_{k \in I} \lambda_k b_i^k \in pB_i$ for all $i \geq j$. By this fact combined with Lemma 3.1 we get for all $n \in \mathbb{N}$

$$\sum_{k \in I} \lambda_k p^{j-1} a_j^k = \sum_{k \in I} \lambda_k p^{j-1} \left(p^n a_{j+n}^k + \sum_{r=0}^{n-1} p^r b_{j+r}^k \right)$$

$$= p^{j+n-1} \sum_{k \in I} \lambda_k a_{j+n}^k + \sum_{r=0}^{n-1} p^{j+r-1} \sum_{k \in I} \lambda_k b_{j+r}^k = p^{j+n-1} \sum_{k \in I} \lambda_k a_{j+n}^k.$$

This holds for all n, thus $\sum_{k \in I} \lambda_k p^{j-1} a_j^k \neq 0$ has infinite height, a contradiction, by [3, 65.1].

Conversely, assume that G is nonseparable, i.e., there is a $0 \neq g \in G$ of infinite height and order p^i. By Lemma 6.1 there is a normed zero tuple $(\lambda_k | k \in I)$ with $h(\sum_{k \in I} \lambda_k \delta^k) \geq j > 0$, contradicting the hypothesis that $h(\delta) = 0$ for all normed Q-combinations δ. □

The following lemma shows, that a Q-combination δ with $h(\delta) = \infty$ allows to find a divisible subgroup of G.

Lemma 6.4. Let $Q = \{a_i^k, \bigoplus B_i \}$ be an inductive quasibasis of G. If $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ is a Q-combination with $h(\delta) = \infty$, then there is a strictly increasing sequence $(n_i)_{i \in \mathbb{N}}$ of natural numbers, such that $\langle d_i \in G | i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$ with $pd_1 = 0$ and $d_i = pd_{i+1} = p^{n_i} \sum_{k \in I} \lambda_k a_{i+n_i}^k$ for $i \in \mathbb{N}$.

Proof. Since $h(\delta) = \infty$, there is a strictly increasing sequence $(n_i)_{i \in \mathbb{N}}$ of natural numbers, such that $p^i \mid \sum_{k \in I} \lambda_k b_i^k$ for all $n \geq n_i$. Define $d_i = p^{n_i} \sum_{k \in I} \lambda_k a_{i+n_i}^k$, for all $i \in \mathbb{N}$. Clearly $pd_1 = p^{n_1+1} \sum_{k \in I} \lambda_k a_{1+n_1}^k = 0$. Moreover, for all $i \in \mathbb{N}$

$$pd_{i+1} = p^{n_{i+1}+1} \sum_{k \in I} \lambda_k a_{i+n_{i+1}+1}^k$$

$$= p^{n_i+(n_{i+1}-n_i+1)} \sum_{k \in I} \lambda_k a_{i+n_i+(n_{i+1}-n_i+1)}^k$$

$$= p^{n_i} \sum_{k \in I} \lambda_k a_{i+n_i}^k - \sum_{r=0}^{n_{i+1}-n_i} p^{n_i+r} \sum_{k \in I} \lambda_k b_{i+n_i+r}^k = d_i,$$

by Lemma 3.1 and the height condition above. Since $(\lambda_k | k \in I) \neq 0$, we have $d_i \neq 0$, for almost all $i \in \mathbb{N}$. Hence $\langle d_i \in G | i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$. □

Lemma 6.5. Let $Q = \{a_i^k, \bigoplus B_i \}$ be an inductive quasibasis of G. If D is a divisible subgroup of G of rank 1, then there is a Q-combination $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ such that $h(\delta) = \infty$, and $D \subset \langle \sum_{k \in I} \lambda_k a_i^k | i \in \mathbb{N} \rangle$.
Proof. Let \(D = \langle g_i \in G \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty) \) be a divisible subgroup of \(G \) with \(pg_1 = 0 \), \(pg_{i+1} = g_i \neq 0 \) for \(i \in \mathbb{N} \). Since \(\mathbb{Z}(p^\infty) \cong \langle g_i + B \mid i \in \mathbb{N} \rangle \subset G/B \), there is a normed zero tuple \((\lambda_k \mid k \in I)\), such that \(g_i = \sum_{k \in I} \lambda_k a^k_i + B \), for all \(i \in \mathbb{N} \), by Proposition 2.1. Hence by Lemma 6.1

\[g_i = p^n \sum_{k \in I} \lambda_k a^k_{i+n} \text{ for almost all } n \in \mathbb{N} \text{ and all } i \in \mathbb{N}. \]

Thus for each \(i \in \mathbb{N} \) and for almost all \(n \in \mathbb{N} \)

\[0 = g_i - pg_{i+1} = p^n \sum_{k \in I} \lambda_k (a^k_{i+n} - pa^k_{i+n+1}) = p^n \sum_{k \in I} \lambda_k b^k_{i+n}, \]
i.e., \(p^i \mid \sum_{k \in I} \lambda_k b^k_{i+n} \). Consequently, \(h(\sum_{k \in I} \lambda_k \delta^k) = \infty \), and, in particular, \(D = \langle g_i \in G \mid i \in \mathbb{N} \rangle \subset \langle \sum_{k \in I} \lambda_k a^k_i \mid i \in \mathbb{N} \rangle \).

The Lemmata 6.4 and 6.5 lead to the main result in this section.

Theorem 6.6. Let \(Q = \{a^i \oplus B_i\} \) be an inductive quasibasis of \(G \). Then \(G \) is not reduced if and only if there is a \(Q \)-combination \(\delta \) with \(h(\delta) = \infty \).

The Theorems 6.3 and 6.6 characterize also the reduced nonseparable groups.

References

